Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C12

Direct product G=N×Q with N=C4×S3 and Q=C12
dρLabelID
S3×C4×C1296S3xC4xC12288,642

Semidirect products G=N:Q with N=C4×S3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C12 = C3×S3×C4⋊C4φ: C12/C6C2 ⊆ Out C4×S396(C4xS3):1C12288,662
(C4×S3)⋊2C12 = C3×C4⋊C47S3φ: C12/C6C2 ⊆ Out C4×S396(C4xS3):2C12288,663
(C4×S3)⋊3C12 = C3×C422S3φ: C12/C6C2 ⊆ Out C4×S396(C4xS3):3C12288,643

Non-split extensions G=N.Q with N=C4×S3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C4×S3).1C12 = C3×S3×M4(2)φ: C12/C6C2 ⊆ Out C4×S3484(C4xS3).1C12288,677
(C4×S3).2C12 = C3×D6.C8φ: C12/C6C2 ⊆ Out C4×S3962(C4xS3).2C12288,232
(C4×S3).3C12 = C6×C8⋊S3φ: C12/C6C2 ⊆ Out C4×S396(C4xS3).3C12288,671
(C4×S3).4C12 = S3×C48φ: trivial image962(C4xS3).4C12288,231
(C4×S3).5C12 = S3×C2×C24φ: trivial image96(C4xS3).5C12288,670

׿
×
𝔽