Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C18

Direct product G=N×Q with N=C2×C8 and Q=C18
dρLabelID
C22×C72288C2^2xC72288,179

Semidirect products G=N:Q with N=C2×C8 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1C18 = C9×C22⋊C8φ: C18/C9C2 ⊆ Aut C2×C8144(C2xC8):1C18288,48
(C2×C8)⋊2C18 = C9×D4⋊C4φ: C18/C9C2 ⊆ Aut C2×C8144(C2xC8):2C18288,52
(C2×C8)⋊3C18 = D8×C18φ: C18/C9C2 ⊆ Aut C2×C8144(C2xC8):3C18288,182
(C2×C8)⋊4C18 = C9×C4○D8φ: C18/C9C2 ⊆ Aut C2×C81442(C2xC8):4C18288,185
(C2×C8)⋊5C18 = SD16×C18φ: C18/C9C2 ⊆ Aut C2×C8144(C2xC8):5C18288,183
(C2×C8)⋊6C18 = M4(2)×C18φ: C18/C9C2 ⊆ Aut C2×C8144(C2xC8):6C18288,180
(C2×C8)⋊7C18 = C9×C8○D4φ: C18/C9C2 ⊆ Aut C2×C81442(C2xC8):7C18288,181

Non-split extensions G=N.Q with N=C2×C8 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C2×C8).1C18 = C9×Q8⋊C4φ: C18/C9C2 ⊆ Aut C2×C8288(C2xC8).1C18288,53
(C2×C8).2C18 = C9×C4⋊C8φ: C18/C9C2 ⊆ Aut C2×C8288(C2xC8).2C18288,55
(C2×C8).3C18 = C9×C2.D8φ: C18/C9C2 ⊆ Aut C2×C8288(C2xC8).3C18288,57
(C2×C8).4C18 = Q16×C18φ: C18/C9C2 ⊆ Aut C2×C8288(C2xC8).4C18288,184
(C2×C8).5C18 = C9×C8.C4φ: C18/C9C2 ⊆ Aut C2×C81442(C2xC8).5C18288,58
(C2×C8).6C18 = C9×C4.Q8φ: C18/C9C2 ⊆ Aut C2×C8288(C2xC8).6C18288,56
(C2×C8).7C18 = C9×C8⋊C4φ: C18/C9C2 ⊆ Aut C2×C8288(C2xC8).7C18288,47
(C2×C8).8C18 = C9×M5(2)φ: C18/C9C2 ⊆ Aut C2×C81442(C2xC8).8C18288,60

׿
×
𝔽