Extensions 1→N→G→Q→1 with N=C18 and Q=C2×C8

Direct product G=N×Q with N=C18 and Q=C2×C8
dρLabelID
C22×C72288C2^2xC72288,179

Semidirect products G=N:Q with N=C18 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C181(C2×C8) = C2×C8×D9φ: C2×C8/C8C2 ⊆ Aut C18144C18:1(C2xC8)288,110
C182(C2×C8) = C22×C9⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C18288C18:2(C2xC8)288,130

Non-split extensions G=N.Q with N=C18 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C18.1(C2×C8) = C16×D9φ: C2×C8/C8C2 ⊆ Aut C181442C18.1(C2xC8)288,4
C18.2(C2×C8) = C16⋊D9φ: C2×C8/C8C2 ⊆ Aut C181442C18.2(C2xC8)288,5
C18.3(C2×C8) = C8×Dic9φ: C2×C8/C8C2 ⊆ Aut C18288C18.3(C2xC8)288,21
C18.4(C2×C8) = Dic9⋊C8φ: C2×C8/C8C2 ⊆ Aut C18288C18.4(C2xC8)288,22
C18.5(C2×C8) = D18⋊C8φ: C2×C8/C8C2 ⊆ Aut C18144C18.5(C2xC8)288,27
C18.6(C2×C8) = C4×C9⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C18288C18.6(C2xC8)288,9
C18.7(C2×C8) = C36⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C18288C18.7(C2xC8)288,11
C18.8(C2×C8) = C2×C9⋊C16φ: C2×C8/C2×C4C2 ⊆ Aut C18288C18.8(C2xC8)288,18
C18.9(C2×C8) = C36.C8φ: C2×C8/C2×C4C2 ⊆ Aut C181442C18.9(C2xC8)288,19
C18.10(C2×C8) = C36.55D4φ: C2×C8/C2×C4C2 ⊆ Aut C18144C18.10(C2xC8)288,37
C18.11(C2×C8) = C9×C22⋊C8central extension (φ=1)144C18.11(C2xC8)288,48
C18.12(C2×C8) = C9×C4⋊C8central extension (φ=1)288C18.12(C2xC8)288,55
C18.13(C2×C8) = C9×M5(2)central extension (φ=1)1442C18.13(C2xC8)288,60

׿
×
𝔽