Extensions 1→N→G→Q→1 with N=C8 and Q=C3xDic3

Direct product G=NxQ with N=C8 and Q=C3xDic3
dρLabelID
Dic3xC2496Dic3xC24288,247

Semidirect products G=N:Q with N=C8 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C8:1(C3xDic3) = C3xC24:1C4φ: C3xDic3/C3xC6C2 ⊆ Aut C896C8:1(C3xDic3)288,252
C8:2(C3xDic3) = C3xC8:Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C896C8:2(C3xDic3)288,251
C8:3(C3xDic3) = C3xC24:C4φ: C3xDic3/C3xC6C2 ⊆ Aut C896C8:3(C3xDic3)288,249

Non-split extensions G=N.Q with N=C8 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C8.1(C3xDic3) = C3xC24.C4φ: C3xDic3/C3xC6C2 ⊆ Aut C8482C8.1(C3xDic3)288,253
C8.2(C3xDic3) = C3xC12.C8φ: C3xDic3/C3xC6C2 ⊆ Aut C8482C8.2(C3xDic3)288,246
C8.3(C3xDic3) = C3xC3:C32central extension (φ=1)962C8.3(C3xDic3)288,64
C8.4(C3xDic3) = C6xC3:C16central extension (φ=1)96C8.4(C3xDic3)288,245

׿
x
:
Z
F
o
wr
Q
<