Extensions 1→N→G→Q→1 with N=C4⋊C4 and Q=C3×S3

Direct product G=N×Q with N=C4⋊C4 and Q=C3×S3
dρLabelID
C3×S3×C4⋊C496C3xS3xC4:C4288,662

Semidirect products G=N:Q with N=C4⋊C4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
C4⋊C41(C3×S3) = C3×C6.D8φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4:1(C3xS3)288,243
C4⋊C42(C3×S3) = C3×D6.D4φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4:2(C3xS3)288,665
C4⋊C43(C3×S3) = C3×C12⋊D4φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4:3(C3xS3)288,666
C4⋊C44(C3×S3) = C3×D6⋊Q8φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4:4(C3xS3)288,667
C4⋊C45(C3×S3) = C3×C4.D12φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4:5(C3xS3)288,668
C4⋊C46(C3×S3) = C3×C4⋊C4⋊S3φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4:6(C3xS3)288,669
C4⋊C47(C3×S3) = C3×C4⋊C47S3φ: trivial image96C4:C4:7(C3xS3)288,663
C4⋊C48(C3×S3) = C3×Dic35D4φ: trivial image96C4:C4:8(C3xS3)288,664

Non-split extensions G=N.Q with N=C4⋊C4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
C4⋊C4.1(C3×S3) = C3×C6.Q16φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4.1(C3xS3)288,241
C4⋊C4.2(C3×S3) = C3×C12.Q8φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4.2(C3xS3)288,242
C4⋊C4.3(C3×S3) = C3×C6.SD16φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4.3(C3xS3)288,244
C4⋊C4.4(C3×S3) = C3×C12⋊Q8φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4.4(C3xS3)288,659
C4⋊C4.5(C3×S3) = C3×Dic3.Q8φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4.5(C3xS3)288,660
C4⋊C4.6(C3×S3) = C3×C4.Dic6φ: C3×S3/C32C2 ⊆ Out C4⋊C496C4:C4.6(C3xS3)288,661
C4⋊C4.7(C3×S3) = C3×Dic6⋊C4φ: trivial image96C4:C4.7(C3xS3)288,658

׿
×
𝔽