Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=C8

Direct product G=N×Q with N=C3×Dic3 and Q=C8
dρLabelID
Dic3×C2496Dic3xC24288,247

Semidirect products G=N:Q with N=C3×Dic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1C8 = C12.81D12φ: C8/C4C2 ⊆ Out C3×Dic396(C3xDic3):1C8288,219
(C3×Dic3)⋊2C8 = Dic3×C3⋊C8φ: C8/C4C2 ⊆ Out C3×Dic396(C3xDic3):2C8288,200
(C3×Dic3)⋊3C8 = C3×Dic3⋊C8φ: C8/C4C2 ⊆ Out C3×Dic396(C3xDic3):3C8288,248

Non-split extensions G=N.Q with N=C3×Dic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1C8 = C24.61D6φ: C8/C4C2 ⊆ Out C3×Dic3964(C3xDic3).1C8288,191
(C3×Dic3).2C8 = S3×C3⋊C16φ: C8/C4C2 ⊆ Out C3×Dic3964(C3xDic3).2C8288,189
(C3×Dic3).3C8 = C3×D6.C8φ: C8/C4C2 ⊆ Out C3×Dic3962(C3xDic3).3C8288,232
(C3×Dic3).4C8 = S3×C48φ: trivial image962(C3xDic3).4C8288,231

׿
×
𝔽