Extensions 1→N→G→Q→1 with N=C6 and Q=C8⋊S3

Direct product G=N×Q with N=C6 and Q=C8⋊S3
dρLabelID
C6×C8⋊S396C6xC8:S3288,671

Semidirect products G=N:Q with N=C6 and Q=C8⋊S3
extensionφ:Q→Aut NdρLabelID
C61(C8⋊S3) = C2×C12.31D6φ: C8⋊S3/C3⋊C8C2 ⊆ Aut C648C6:1(C8:S3)288,468
C62(C8⋊S3) = C2×C24⋊S3φ: C8⋊S3/C24C2 ⊆ Aut C6144C6:2(C8:S3)288,757
C63(C8⋊S3) = C2×D6.Dic3φ: C8⋊S3/C4×S3C2 ⊆ Aut C696C6:3(C8:S3)288,467

Non-split extensions G=N.Q with N=C6 and Q=C8⋊S3
extensionφ:Q→Aut NdρLabelID
C6.1(C8⋊S3) = C2.Dic32φ: C8⋊S3/C3⋊C8C2 ⊆ Aut C696C6.1(C8:S3)288,203
C6.2(C8⋊S3) = C12.78D12φ: C8⋊S3/C3⋊C8C2 ⊆ Aut C648C6.2(C8:S3)288,205
C6.3(C8⋊S3) = C12.15Dic6φ: C8⋊S3/C3⋊C8C2 ⊆ Aut C696C6.3(C8:S3)288,220
C6.4(C8⋊S3) = Dic9⋊C8φ: C8⋊S3/C24C2 ⊆ Aut C6288C6.4(C8:S3)288,22
C6.5(C8⋊S3) = C72⋊C4φ: C8⋊S3/C24C2 ⊆ Aut C6288C6.5(C8:S3)288,23
C6.6(C8⋊S3) = D18⋊C8φ: C8⋊S3/C24C2 ⊆ Aut C6144C6.6(C8:S3)288,27
C6.7(C8⋊S3) = C2×C8⋊D9φ: C8⋊S3/C24C2 ⊆ Aut C6144C6.7(C8:S3)288,111
C6.8(C8⋊S3) = C12.30Dic6φ: C8⋊S3/C24C2 ⊆ Aut C6288C6.8(C8:S3)288,289
C6.9(C8⋊S3) = C24⋊Dic3φ: C8⋊S3/C24C2 ⊆ Aut C6288C6.9(C8:S3)288,290
C6.10(C8⋊S3) = C12.60D12φ: C8⋊S3/C24C2 ⊆ Aut C6144C6.10(C8:S3)288,295
C6.11(C8⋊S3) = C3⋊C8⋊Dic3φ: C8⋊S3/C4×S3C2 ⊆ Aut C696C6.11(C8:S3)288,202
C6.12(C8⋊S3) = C12.77D12φ: C8⋊S3/C4×S3C2 ⊆ Aut C696C6.12(C8:S3)288,204
C6.13(C8⋊S3) = C12.81D12φ: C8⋊S3/C4×S3C2 ⊆ Aut C696C6.13(C8:S3)288,219
C6.14(C8⋊S3) = C3×Dic3⋊C8central extension (φ=1)96C6.14(C8:S3)288,248
C6.15(C8⋊S3) = C3×C24⋊C4central extension (φ=1)96C6.15(C8:S3)288,249
C6.16(C8⋊S3) = C3×D6⋊C8central extension (φ=1)96C6.16(C8:S3)288,254

׿
×
𝔽