Extensions 1→N→G→Q→1 with N=S3×C24 and Q=C2

Direct product G=N×Q with N=S3×C24 and Q=C2
dρLabelID
S3×C2×C2496S3xC2xC24288,670

Semidirect products G=N:Q with N=S3×C24 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C24)⋊1C2 = D247S3φ: C2/C1C2 ⊆ Out S3×C24964-(S3xC24):1C2288,455
(S3×C24)⋊2C2 = D6.3D12φ: C2/C1C2 ⊆ Out S3×C24484+(S3xC24):2C2288,456
(S3×C24)⋊3C2 = D6.1D12φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):3C2288,454
(S3×C24)⋊4C2 = S3×D24φ: C2/C1C2 ⊆ Out S3×C24484+(S3xC24):4C2288,441
(S3×C24)⋊5C2 = C3×S3×D8φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):5C2288,681
(S3×C24)⋊6C2 = C3×D83S3φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):6C2288,683
(S3×C24)⋊7C2 = C3×D24⋊C2φ: C2/C1C2 ⊆ Out S3×C24964(S3xC24):7C2288,690
(S3×C24)⋊8C2 = C3×Q8.7D6φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):8C2288,687
(S3×C24)⋊9C2 = S3×C24⋊C2φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):9C2288,440
(S3×C24)⋊10C2 = C3×S3×SD16φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):10C2288,684
(S3×C24)⋊11C2 = S32×C8φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):11C2288,437
(S3×C24)⋊12C2 = C24.63D6φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):12C2288,451
(S3×C24)⋊13C2 = S3×C8⋊S3φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):13C2288,438
(S3×C24)⋊14C2 = C24.64D6φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):14C2288,452
(S3×C24)⋊15C2 = C3×C8○D12φ: C2/C1C2 ⊆ Out S3×C24482(S3xC24):15C2288,672
(S3×C24)⋊16C2 = C3×S3×M4(2)φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):16C2288,677
(S3×C24)⋊17C2 = C3×D12.C4φ: C2/C1C2 ⊆ Out S3×C24484(S3xC24):17C2288,678

Non-split extensions G=N.Q with N=S3×C24 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C24).1C2 = S3×Dic12φ: C2/C1C2 ⊆ Out S3×C24964-(S3xC24).1C2288,447
(S3×C24).2C2 = C3×S3×Q16φ: C2/C1C2 ⊆ Out S3×C24964(S3xC24).2C2288,688
(S3×C24).3C2 = S3×C3⋊C16φ: C2/C1C2 ⊆ Out S3×C24964(S3xC24).3C2288,189
(S3×C24).4C2 = C24.61D6φ: C2/C1C2 ⊆ Out S3×C24964(S3xC24).4C2288,191
(S3×C24).5C2 = C3×D6.C8φ: C2/C1C2 ⊆ Out S3×C24962(S3xC24).5C2288,232
(S3×C24).6C2 = S3×C48φ: trivial image962(S3xC24).6C2288,231

׿
×
𝔽