Extensions 1→N→G→Q→1 with N=S3xC24 and Q=C2

Direct product G=NxQ with N=S3xC24 and Q=C2
dρLabelID
S3xC2xC2496S3xC2xC24288,670

Semidirect products G=N:Q with N=S3xC24 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC24):1C2 = D24:7S3φ: C2/C1C2 ⊆ Out S3xC24964-(S3xC24):1C2288,455
(S3xC24):2C2 = D6.3D12φ: C2/C1C2 ⊆ Out S3xC24484+(S3xC24):2C2288,456
(S3xC24):3C2 = D6.1D12φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):3C2288,454
(S3xC24):4C2 = S3xD24φ: C2/C1C2 ⊆ Out S3xC24484+(S3xC24):4C2288,441
(S3xC24):5C2 = C3xS3xD8φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):5C2288,681
(S3xC24):6C2 = C3xD8:3S3φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):6C2288,683
(S3xC24):7C2 = C3xD24:C2φ: C2/C1C2 ⊆ Out S3xC24964(S3xC24):7C2288,690
(S3xC24):8C2 = C3xQ8.7D6φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):8C2288,687
(S3xC24):9C2 = S3xC24:C2φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):9C2288,440
(S3xC24):10C2 = C3xS3xSD16φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):10C2288,684
(S3xC24):11C2 = S32xC8φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):11C2288,437
(S3xC24):12C2 = C24.63D6φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):12C2288,451
(S3xC24):13C2 = S3xC8:S3φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):13C2288,438
(S3xC24):14C2 = C24.64D6φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):14C2288,452
(S3xC24):15C2 = C3xC8oD12φ: C2/C1C2 ⊆ Out S3xC24482(S3xC24):15C2288,672
(S3xC24):16C2 = C3xS3xM4(2)φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):16C2288,677
(S3xC24):17C2 = C3xD12.C4φ: C2/C1C2 ⊆ Out S3xC24484(S3xC24):17C2288,678

Non-split extensions G=N.Q with N=S3xC24 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC24).1C2 = S3xDic12φ: C2/C1C2 ⊆ Out S3xC24964-(S3xC24).1C2288,447
(S3xC24).2C2 = C3xS3xQ16φ: C2/C1C2 ⊆ Out S3xC24964(S3xC24).2C2288,688
(S3xC24).3C2 = S3xC3:C16φ: C2/C1C2 ⊆ Out S3xC24964(S3xC24).3C2288,189
(S3xC24).4C2 = C24.61D6φ: C2/C1C2 ⊆ Out S3xC24964(S3xC24).4C2288,191
(S3xC24).5C2 = C3xD6.C8φ: C2/C1C2 ⊆ Out S3xC24962(S3xC24).5C2288,232
(S3xC24).6C2 = S3xC48φ: trivial image962(S3xC24).6C2288,231

׿
x
:
Z
F
o
wr
Q
<