Extensions 1→N→G→Q→1 with N=C3 and Q=C4×Dic6

Direct product G=N×Q with N=C3 and Q=C4×Dic6
dρLabelID
C12×Dic696C12xDic6288,639

Semidirect products G=N:Q with N=C3 and Q=C4×Dic6
extensionφ:Q→Aut NdρLabelID
C31(C4×Dic6) = C4×C322Q8φ: C4×Dic6/C4×Dic3C2 ⊆ Aut C396C3:1(C4xDic6)288,565
C32(C4×Dic6) = Dic35Dic6φ: C4×Dic6/Dic3⋊C4C2 ⊆ Aut C396C3:2(C4xDic6)288,485
C33(C4×Dic6) = Dic36Dic6φ: C4×Dic6/C4⋊Dic3C2 ⊆ Aut C396C3:3(C4xDic6)288,492
C34(C4×Dic6) = C4×C324Q8φ: C4×Dic6/C4×C12C2 ⊆ Aut C3288C3:4(C4xDic6)288,725
C35(C4×Dic6) = Dic3×Dic6φ: C4×Dic6/C2×Dic6C2 ⊆ Aut C396C3:5(C4xDic6)288,490

Non-split extensions G=N.Q with N=C3 and Q=C4×Dic6
extensionφ:Q→Aut NdρLabelID
C3.(C4×Dic6) = C4×Dic18φ: C4×Dic6/C4×C12C2 ⊆ Aut C3288C3.(C4xDic6)288,78

׿
×
𝔽