Extensions 1→N→G→Q→1 with N=D4 and Q=C2×C18

Direct product G=N×Q with N=D4 and Q=C2×C18
dρLabelID
D4×C2×C18144D4xC2xC18288,368

Semidirect products G=N:Q with N=D4 and Q=C2×C18
extensionφ:Q→Out NdρLabelID
D41(C2×C18) = D8×C18φ: C2×C18/C18C2 ⊆ Out D4144D4:1(C2xC18)288,182
D42(C2×C18) = C9×C8⋊C22φ: C2×C18/C18C2 ⊆ Out D4724D4:2(C2xC18)288,186
D43(C2×C18) = C4○D4×C18φ: trivial image144D4:3(C2xC18)288,370
D44(C2×C18) = C9×2+ 1+4φ: trivial image724D4:4(C2xC18)288,371

Non-split extensions G=N.Q with N=D4 and Q=C2×C18
extensionφ:Q→Out NdρLabelID
D4.1(C2×C18) = SD16×C18φ: C2×C18/C18C2 ⊆ Out D4144D4.1(C2xC18)288,183
D4.2(C2×C18) = C9×C4○D8φ: C2×C18/C18C2 ⊆ Out D41442D4.2(C2xC18)288,185
D4.3(C2×C18) = C9×C8.C22φ: C2×C18/C18C2 ⊆ Out D41444D4.3(C2xC18)288,187
D4.4(C2×C18) = C9×2- 1+4φ: trivial image1444D4.4(C2xC18)288,372

׿
×
𝔽