Extensions 1→N→G→Q→1 with N=C8 and Q=C3⋊Dic3

Direct product G=N×Q with N=C8 and Q=C3⋊Dic3
dρLabelID
C8×C3⋊Dic3288C8xC3:Dic3288,288

Semidirect products G=N:Q with N=C8 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C81(C3⋊Dic3) = C241Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C8288C8:1(C3:Dic3)288,293
C82(C3⋊Dic3) = C242Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C8288C8:2(C3:Dic3)288,292
C83(C3⋊Dic3) = C24⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C8288C8:3(C3:Dic3)288,290

Non-split extensions G=N.Q with N=C8 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C8.1(C3⋊Dic3) = C12.59D12φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C8144C8.1(C3:Dic3)288,294
C8.2(C3⋊Dic3) = C24.94D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C8144C8.2(C3:Dic3)288,287
C8.3(C3⋊Dic3) = C48.S3central extension (φ=1)288C8.3(C3:Dic3)288,65
C8.4(C3⋊Dic3) = C2×C24.S3central extension (φ=1)288C8.4(C3:Dic3)288,286

׿
×
𝔽