Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=Dic3

Direct product G=N×Q with N=C2×Dic3 and Q=Dic3
dρLabelID
C2×Dic3296C2xDic3^2288,602

Semidirect products G=N:Q with N=C2×Dic3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊Dic3 = C62.31D4φ: Dic3/C3C4 ⊆ Out C2×Dic3244(C2xDic3):Dic3288,228
(C2×Dic3)⋊2Dic3 = C62.6Q8φ: Dic3/C6C2 ⊆ Out C2×Dic396(C2xDic3):2Dic3288,227
(C2×Dic3)⋊3Dic3 = C62.97C23φ: Dic3/C6C2 ⊆ Out C2×Dic348(C2xDic3):3Dic3288,603
(C2×Dic3)⋊4Dic3 = C2×Dic3⋊Dic3φ: Dic3/C6C2 ⊆ Out C2×Dic396(C2xDic3):4Dic3288,613

Non-split extensions G=N.Q with N=C2×Dic3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2×Dic3).Dic3 = C12.14D12φ: Dic3/C3C4 ⊆ Out C2×Dic3484(C2xDic3).Dic3288,208
(C2×Dic3).2Dic3 = C3⋊C8⋊Dic3φ: Dic3/C6C2 ⊆ Out C2×Dic396(C2xDic3).2Dic3288,202
(C2×Dic3).3Dic3 = C12.77D12φ: Dic3/C6C2 ⊆ Out C2×Dic396(C2xDic3).3Dic3288,204
(C2×Dic3).4Dic3 = C12.81D12φ: Dic3/C6C2 ⊆ Out C2×Dic396(C2xDic3).4Dic3288,219
(C2×Dic3).5Dic3 = S3×C4.Dic3φ: Dic3/C6C2 ⊆ Out C2×Dic3484(C2xDic3).5Dic3288,461
(C2×Dic3).6Dic3 = C2×D6.Dic3φ: Dic3/C6C2 ⊆ Out C2×Dic396(C2xDic3).6Dic3288,467
(C2×Dic3).7Dic3 = Dic3×C3⋊C8φ: trivial image96(C2xDic3).7Dic3288,200
(C2×Dic3).8Dic3 = C2×S3×C3⋊C8φ: trivial image96(C2xDic3).8Dic3288,460

׿
×
𝔽