Extensions 1→N→G→Q→1 with N=C2 and Q=D4×C3×C6

Direct product G=N×Q with N=C2 and Q=D4×C3×C6
dρLabelID
D4×C62144D4xC6^2288,1019


Non-split extensions G=N.Q with N=C2 and Q=D4×C3×C6
extensionφ:Q→Aut NdρLabelID
C2.1(D4×C3×C6) = C22⋊C4×C3×C6central extension (φ=1)144C2.1(D4xC3xC6)288,812
C2.2(D4×C3×C6) = C4⋊C4×C3×C6central extension (φ=1)288C2.2(D4xC3xC6)288,813
C2.3(D4×C3×C6) = D4×C3×C12central extension (φ=1)144C2.3(D4xC3xC6)288,815
C2.4(D4×C3×C6) = C32×C22≀C2central stem extension (φ=1)72C2.4(D4xC3xC6)288,817
C2.5(D4×C3×C6) = C32×C4⋊D4central stem extension (φ=1)144C2.5(D4xC3xC6)288,818
C2.6(D4×C3×C6) = C32×C22⋊Q8central stem extension (φ=1)144C2.6(D4xC3xC6)288,819
C2.7(D4×C3×C6) = C32×C22.D4central stem extension (φ=1)144C2.7(D4xC3xC6)288,820
C2.8(D4×C3×C6) = C32×C4.4D4central stem extension (φ=1)144C2.8(D4xC3xC6)288,821
C2.9(D4×C3×C6) = C32×C41D4central stem extension (φ=1)144C2.9(D4xC3xC6)288,824
C2.10(D4×C3×C6) = C32×C4⋊Q8central stem extension (φ=1)288C2.10(D4xC3xC6)288,825
C2.11(D4×C3×C6) = D8×C3×C6central stem extension (φ=1)144C2.11(D4xC3xC6)288,829
C2.12(D4×C3×C6) = SD16×C3×C6central stem extension (φ=1)144C2.12(D4xC3xC6)288,830
C2.13(D4×C3×C6) = Q16×C3×C6central stem extension (φ=1)288C2.13(D4xC3xC6)288,831
C2.14(D4×C3×C6) = C32×C4○D8central stem extension (φ=1)144C2.14(D4xC3xC6)288,832
C2.15(D4×C3×C6) = C32×C8⋊C22central stem extension (φ=1)72C2.15(D4xC3xC6)288,833
C2.16(D4×C3×C6) = C32×C8.C22central stem extension (φ=1)144C2.16(D4xC3xC6)288,834

׿
×
𝔽