Extensions 1→N→G→Q→1 with N=Q8xC3xC6 and Q=C2

Direct product G=NxQ with N=Q8xC3xC6 and Q=C2
dρLabelID
Q8xC62288Q8xC6^2288,1020

Semidirect products G=N:Q with N=Q8xC3xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC3xC6):1C2 = C6xQ8:2S3φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6):1C2288,712
(Q8xC3xC6):2C2 = C3xQ8.11D6φ: C2/C1C2 ⊆ Out Q8xC3xC6484(Q8xC3xC6):2C2288,713
(Q8xC3xC6):3C2 = C3xD6:3Q8φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6):3C2288,717
(Q8xC3xC6):4C2 = C3xC12.23D4φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6):4C2288,718
(Q8xC3xC6):5C2 = C2xC32:11SD16φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):5C2288,798
(Q8xC3xC6):6C2 = C62.134D4φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):6C2288,799
(Q8xC3xC6):7C2 = C62.261C23φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):7C2288,803
(Q8xC3xC6):8C2 = C62.262C23φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):8C2288,804
(Q8xC3xC6):9C2 = S3xC6xQ8φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6):9C2288,995
(Q8xC3xC6):10C2 = C6xQ8:3S3φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6):10C2288,996
(Q8xC3xC6):11C2 = C3xQ8.15D6φ: C2/C1C2 ⊆ Out Q8xC3xC6484(Q8xC3xC6):11C2288,997
(Q8xC3xC6):12C2 = C2xQ8xC3:S3φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):12C2288,1010
(Q8xC3xC6):13C2 = C2xC12.26D6φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):13C2288,1011
(Q8xC3xC6):14C2 = C32:72- 1+4φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):14C2288,1012
(Q8xC3xC6):15C2 = C32xC22:Q8φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):15C2288,819
(Q8xC3xC6):16C2 = C32xC4.4D4φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):16C2288,821
(Q8xC3xC6):17C2 = SD16xC3xC6φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):17C2288,830
(Q8xC3xC6):18C2 = C32xC8.C22φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):18C2288,834
(Q8xC3xC6):19C2 = C32x2- 1+4φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6):19C2288,1023
(Q8xC3xC6):20C2 = C4oD4xC3xC6φ: trivial image144(Q8xC3xC6):20C2288,1021

Non-split extensions G=N.Q with N=Q8xC3xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC3xC6).1C2 = C3xQ8:2Dic3φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6).1C2288,269
(Q8xC3xC6).2C2 = C3xC12.10D4φ: C2/C1C2 ⊆ Out Q8xC3xC6484(Q8xC3xC6).2C2288,270
(Q8xC3xC6).3C2 = C62.117D4φ: C2/C1C2 ⊆ Out Q8xC3xC6288(Q8xC3xC6).3C2288,310
(Q8xC3xC6).4C2 = (C6xC12).C4φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6).4C2288,311
(Q8xC3xC6).5C2 = C6xC3:Q16φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6).5C2288,714
(Q8xC3xC6).6C2 = C3xDic3:Q8φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6).6C2288,715
(Q8xC3xC6).7C2 = C3xQ8xDic3φ: C2/C1C2 ⊆ Out Q8xC3xC696(Q8xC3xC6).7C2288,716
(Q8xC3xC6).8C2 = C2xC32:7Q16φ: C2/C1C2 ⊆ Out Q8xC3xC6288(Q8xC3xC6).8C2288,800
(Q8xC3xC6).9C2 = C62.259C23φ: C2/C1C2 ⊆ Out Q8xC3xC6288(Q8xC3xC6).9C2288,801
(Q8xC3xC6).10C2 = Q8xC3:Dic3φ: C2/C1C2 ⊆ Out Q8xC3xC6288(Q8xC3xC6).10C2288,802
(Q8xC3xC6).11C2 = C32xC4.10D4φ: C2/C1C2 ⊆ Out Q8xC3xC6144(Q8xC3xC6).11C2288,319
(Q8xC3xC6).12C2 = C32xQ8:C4φ: C2/C1C2 ⊆ Out Q8xC3xC6288(Q8xC3xC6).12C2288,321
(Q8xC3xC6).13C2 = C32xC4:Q8φ: C2/C1C2 ⊆ Out Q8xC3xC6288(Q8xC3xC6).13C2288,825
(Q8xC3xC6).14C2 = Q16xC3xC6φ: C2/C1C2 ⊆ Out Q8xC3xC6288(Q8xC3xC6).14C2288,831
(Q8xC3xC6).15C2 = Q8xC3xC12φ: trivial image288(Q8xC3xC6).15C2288,816

׿
x
:
Z
F
o
wr
Q
<