Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3.D4

Direct product G=N×Q with N=C3 and Q=Dic3.D4
dρLabelID
C3×Dic3.D448C3xDic3.D4288,649

Semidirect products G=N:Q with N=C3 and Q=Dic3.D4
extensionφ:Q→Aut NdρLabelID
C31(Dic3.D4) = D62Dic6φ: Dic3.D4/Dic3⋊C4C2 ⊆ Aut C396C3:1(Dic3.D4)288,541
C32(Dic3.D4) = D63Dic6φ: Dic3.D4/Dic3⋊C4C2 ⊆ Aut C396C3:2(Dic3.D4)288,544
C33(Dic3.D4) = D64Dic6φ: Dic3.D4/C4⋊Dic3C2 ⊆ Aut C396C3:3(Dic3.D4)288,547
C34(Dic3.D4) = C624Q8φ: Dic3.D4/C6.D4C2 ⊆ Aut C348C3:4(Dic3.D4)288,630
C35(Dic3.D4) = C626Q8φ: Dic3.D4/C3×C22⋊C4C2 ⊆ Aut C3144C3:5(Dic3.D4)288,735
C36(Dic3.D4) = D61Dic6φ: Dic3.D4/C2×Dic6C2 ⊆ Aut C396C3:6(Dic3.D4)288,535
C37(Dic3.D4) = C623Q8φ: Dic3.D4/C22×Dic3C2 ⊆ Aut C348C3:7(Dic3.D4)288,612

Non-split extensions G=N.Q with N=C3 and Q=Dic3.D4
extensionφ:Q→Aut NdρLabelID
C3.(Dic3.D4) = C222Dic18φ: Dic3.D4/C3×C22⋊C4C2 ⊆ Aut C3144C3.(Dic3.D4)288,88

׿
×
𝔽