Extensions 1→N→G→Q→1 with N=C2 and Q=C2xS3wrC2

Direct product G=NxQ with N=C2 and Q=C2xS3wrC2
dρLabelID
C22xS3wrC224C2^2xS3wrC2288,1031


Non-split extensions G=N.Q with N=C2 and Q=C2xS3wrC2
extensionφ:Q→Aut NdρLabelID
C2.1(C2xS3wrC2) = C4xS3wrC2central extension (φ=1)244C2.1(C2xS3wrC2)288,877
C2.2(C2xS3wrC2) = C2xS32:C4central extension (φ=1)24C2.2(C2xS3wrC2)288,880
C2.3(C2xS3wrC2) = C2xC3:S3.Q8central extension (φ=1)48C2.3(C2xS3wrC2)288,882
C2.4(C2xS3wrC2) = S32:Q8central stem extension (φ=1)244C2.4(C2xS3wrC2)288,868
C2.5(C2xS3wrC2) = C4.4S3wrC2central stem extension (φ=1)248+C2.5(C2xS3wrC2)288,869
C2.6(C2xS3wrC2) = C32:C4:Q8central stem extension (φ=1)488-C2.6(C2xS3wrC2)288,870
C2.7(C2xS3wrC2) = C32:D8:5C2central stem extension (φ=1)484C2.7(C2xS3wrC2)288,871
C2.8(C2xS3wrC2) = C32:D8:C2central stem extension (φ=1)244C2.8(C2xS3wrC2)288,872
C2.9(C2xS3wrC2) = C3:S3:D8central stem extension (φ=1)248+C2.9(C2xS3wrC2)288,873
C2.10(C2xS3wrC2) = C32:Q16:C2central stem extension (φ=1)484C2.10(C2xS3wrC2)288,874
C2.11(C2xS3wrC2) = C3:S3:2SD16central stem extension (φ=1)248+C2.11(C2xS3wrC2)288,875
C2.12(C2xS3wrC2) = C3:S3:Q16central stem extension (φ=1)488-C2.12(C2xS3wrC2)288,876
C2.13(C2xS3wrC2) = S32:D4central stem extension (φ=1)244C2.13(C2xS3wrC2)288,878
C2.14(C2xS3wrC2) = C4:S3wrC2central stem extension (φ=1)248+C2.14(C2xS3wrC2)288,879
C2.15(C2xS3wrC2) = C62.9D4central stem extension (φ=1)244C2.15(C2xS3wrC2)288,881
C2.16(C2xS3wrC2) = C2xC32:D8central stem extension (φ=1)48C2.16(C2xS3wrC2)288,883
C2.17(C2xS3wrC2) = C62.12D4central stem extension (φ=1)244C2.17(C2xS3wrC2)288,884
C2.18(C2xS3wrC2) = C62.13D4central stem extension (φ=1)488-C2.18(C2xS3wrC2)288,885
C2.19(C2xS3wrC2) = C2xC32:2SD16central stem extension (φ=1)48C2.19(C2xS3wrC2)288,886
C2.20(C2xS3wrC2) = C62.15D4central stem extension (φ=1)484-C2.20(C2xS3wrC2)288,887
C2.21(C2xS3wrC2) = C2xC32:Q16central stem extension (φ=1)96C2.21(C2xS3wrC2)288,888
C2.22(C2xS3wrC2) = D6wrC2central stem extension (φ=1)124+C2.22(C2xS3wrC2)288,889
C2.23(C2xS3wrC2) = C62:D4central stem extension (φ=1)248+C2.23(C2xS3wrC2)288,890

׿
x
:
Z
F
o
wr
Q
<