Extensions 1→N→G→Q→1 with N=C2 and Q=C2×PSU3(𝔽2)

Direct product G=N×Q with N=C2 and Q=C2×PSU3(𝔽2)
dρLabelID
C22×PSU3(𝔽2)36C2^2xPSU(3,2)288,1032


Non-split extensions G=N.Q with N=C2 and Q=C2×PSU3(𝔽2)
extensionφ:Q→Aut NdρLabelID
C2.1(C2×PSU3(𝔽2)) = C4×PSU3(𝔽2)central extension (φ=1)368C2.1(C2xPSU(3,2))288,892
C2.2(C2×PSU3(𝔽2)) = C2×C2.PSU3(𝔽2)central extension (φ=1)48C2.2(C2xPSU(3,2))288,894
C2.3(C2×PSU3(𝔽2)) = C4.3PSU3(𝔽2)central stem extension (φ=1)488C2.3(C2xPSU(3,2))288,891
C2.4(C2×PSU3(𝔽2)) = C4⋊PSU3(𝔽2)central stem extension (φ=1)368C2.4(C2xPSU(3,2))288,893
C2.5(C2×PSU3(𝔽2)) = C62⋊Q8central stem extension (φ=1)248+C2.5(C2xPSU(3,2))288,895

׿
×
𝔽