Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C3⋊S3

Direct product G=N×Q with N=C2×C8 and Q=C3⋊S3
dρLabelID
C2×C8×C3⋊S3144C2xC8xC3:S3288,756

Semidirect products G=N:Q with N=C2×C8 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1(C3⋊S3) = C12.60D12φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8):1(C3:S3)288,295
(C2×C8)⋊2(C3⋊S3) = C62.84D4φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8):2(C3:S3)288,296
(C2×C8)⋊3(C3⋊S3) = C2×C325D8φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8):3(C3:S3)288,760
(C2×C8)⋊4(C3⋊S3) = C24.78D6φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8):4(C3:S3)288,761
(C2×C8)⋊5(C3⋊S3) = C2×C242S3φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8):5(C3:S3)288,759
(C2×C8)⋊6(C3⋊S3) = C2×C24⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8):6(C3:S3)288,757
(C2×C8)⋊7(C3⋊S3) = C24.95D6φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8):7(C3:S3)288,758

Non-split extensions G=N.Q with N=C2×C8 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C8).1(C3⋊S3) = C12.30Dic6φ: C3⋊S3/C32C2 ⊆ Aut C2×C8288(C2xC8).1(C3:S3)288,289
(C2×C8).2(C3⋊S3) = C6.4Dic12φ: C3⋊S3/C32C2 ⊆ Aut C2×C8288(C2xC8).2(C3:S3)288,291
(C2×C8).3(C3⋊S3) = C241Dic3φ: C3⋊S3/C32C2 ⊆ Aut C2×C8288(C2xC8).3(C3:S3)288,293
(C2×C8).4(C3⋊S3) = C2×C325Q16φ: C3⋊S3/C32C2 ⊆ Aut C2×C8288(C2xC8).4(C3:S3)288,762
(C2×C8).5(C3⋊S3) = C12.59D12φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8).5(C3:S3)288,294
(C2×C8).6(C3⋊S3) = C242Dic3φ: C3⋊S3/C32C2 ⊆ Aut C2×C8288(C2xC8).6(C3:S3)288,292
(C2×C8).7(C3⋊S3) = C24.94D6φ: C3⋊S3/C32C2 ⊆ Aut C2×C8144(C2xC8).7(C3:S3)288,287
(C2×C8).8(C3⋊S3) = C24⋊Dic3φ: C3⋊S3/C32C2 ⊆ Aut C2×C8288(C2xC8).8(C3:S3)288,290
(C2×C8).9(C3⋊S3) = C2×C24.S3central extension (φ=1)288(C2xC8).9(C3:S3)288,286
(C2×C8).10(C3⋊S3) = C8×C3⋊Dic3central extension (φ=1)288(C2xC8).10(C3:S3)288,288

׿
×
𝔽