Extensions 1→N→G→Q→1 with N=D6 and Q=C4×S3

Direct product G=N×Q with N=D6 and Q=C4×S3
dρLabelID
S32×C2×C448S3^2xC2xC4288,950

Semidirect products G=N:Q with N=D6 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
D61(C4×S3) = Dic34D12φ: C4×S3/Dic3C2 ⊆ Out D648D6:1(C4xS3)288,528
D62(C4×S3) = C62.51C23φ: C4×S3/Dic3C2 ⊆ Out D648D6:2(C4xS3)288,529
D63(C4×S3) = C62.72C23φ: C4×S3/Dic3C2 ⊆ Out D696D6:3(C4xS3)288,550
D64(C4×S3) = C62.49C23φ: C4×S3/C12C2 ⊆ Out D696D6:4(C4xS3)288,527
D65(C4×S3) = C4×D6⋊S3φ: C4×S3/C12C2 ⊆ Out D696D6:5(C4xS3)288,549
D66(C4×S3) = C4×C3⋊D12φ: C4×S3/C12C2 ⊆ Out D648D6:6(C4xS3)288,551
D67(C4×S3) = C62.74C23φ: C4×S3/C12C2 ⊆ Out D648D6:7(C4xS3)288,552
D68(C4×S3) = S3×D6⋊C4φ: C4×S3/D6C2 ⊆ Out D648D6:8(C4xS3)288,568
D69(C4×S3) = C62.91C23φ: C4×S3/D6C2 ⊆ Out D648D6:9(C4xS3)288,569

Non-split extensions G=N.Q with N=D6 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
D6.1(C4×S3) = C24.D6φ: C4×S3/Dic3C2 ⊆ Out D6484D6.1(C4xS3)288,453
D6.2(C4×S3) = C24.63D6φ: C4×S3/C12C2 ⊆ Out D6484D6.2(C4xS3)288,451
D6.3(C4×S3) = C24.64D6φ: C4×S3/C12C2 ⊆ Out D6484D6.3(C4xS3)288,452
D6.4(C4×S3) = S3×C8⋊S3φ: C4×S3/D6C2 ⊆ Out D6484D6.4(C4xS3)288,438
D6.5(C4×S3) = C24⋊D6φ: C4×S3/D6C2 ⊆ Out D6484D6.5(C4xS3)288,439
D6.6(C4×S3) = C62.47C23φ: C4×S3/D6C2 ⊆ Out D696D6.6(C4xS3)288,525
D6.7(C4×S3) = C62.48C23φ: C4×S3/D6C2 ⊆ Out D696D6.7(C4xS3)288,526
D6.8(C4×S3) = S32×C8φ: trivial image484D6.8(C4xS3)288,437
D6.9(C4×S3) = C4×S3×Dic3φ: trivial image96D6.9(C4xS3)288,523
D6.10(C4×S3) = S3×Dic3⋊C4φ: trivial image96D6.10(C4xS3)288,524

׿
×
𝔽