Extensions 1→N→G→Q→1 with N=Dic12 and Q=S3

Direct product G=N×Q with N=Dic12 and Q=S3
dρLabelID
S3×Dic12964-S3xDic12288,447

Semidirect products G=N:Q with N=Dic12 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic121S3 = C24.49D6φ: S3/C3C2 ⊆ Out Dic12484+Dic12:1S3288,197
Dic122S3 = Dic12⋊S3φ: S3/C3C2 ⊆ Out Dic12484Dic12:2S3288,449
Dic123S3 = D24.S3φ: S3/C3C2 ⊆ Out Dic12964Dic12:3S3288,195
Dic124S3 = C24.23D6φ: S3/C3C2 ⊆ Out Dic12484Dic12:4S3288,450
Dic125S3 = D245S3φ: S3/C3C2 ⊆ Out Dic12484Dic12:5S3288,458
Dic126S3 = D12.4D6φ: S3/C3C2 ⊆ Out Dic12484Dic12:6S3288,459
Dic127S3 = D6.3D12φ: trivial image484+Dic12:7S3288,456

Non-split extensions G=N.Q with N=Dic12 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic12.1S3 = C323Q32φ: S3/C3C2 ⊆ Out Dic12964-Dic12.1S3288,199
Dic12.2S3 = C322Q32φ: S3/C3C2 ⊆ Out Dic12964Dic12.2S3288,198

׿
×
𝔽