Extensions 1→N→G→Q→1 with N=Dic12 and Q=S3

Direct product G=NxQ with N=Dic12 and Q=S3
dρLabelID
S3xDic12964-S3xDic12288,447

Semidirect products G=N:Q with N=Dic12 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic12:1S3 = C24.49D6φ: S3/C3C2 ⊆ Out Dic12484+Dic12:1S3288,197
Dic12:2S3 = Dic12:S3φ: S3/C3C2 ⊆ Out Dic12484Dic12:2S3288,449
Dic12:3S3 = D24.S3φ: S3/C3C2 ⊆ Out Dic12964Dic12:3S3288,195
Dic12:4S3 = C24.23D6φ: S3/C3C2 ⊆ Out Dic12484Dic12:4S3288,450
Dic12:5S3 = D24:5S3φ: S3/C3C2 ⊆ Out Dic12484Dic12:5S3288,458
Dic12:6S3 = D12.4D6φ: S3/C3C2 ⊆ Out Dic12484Dic12:6S3288,459
Dic12:7S3 = D6.3D12φ: trivial image484+Dic12:7S3288,456

Non-split extensions G=N.Q with N=Dic12 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic12.1S3 = C32:3Q32φ: S3/C3C2 ⊆ Out Dic12964-Dic12.1S3288,199
Dic12.2S3 = C32:2Q32φ: S3/C3C2 ⊆ Out Dic12964Dic12.2S3288,198

׿
x
:
Z
F
o
wr
Q
<