Extensions 1→N→G→Q→1 with N=C3 and Q=Dic6⋊C4

Direct product G=N×Q with N=C3 and Q=Dic6⋊C4
dρLabelID
C3×Dic6⋊C496C3xDic6:C4288,658

Semidirect products G=N:Q with N=C3 and Q=Dic6⋊C4
extensionφ:Q→Aut NdρLabelID
C31(Dic6⋊C4) = Dic35Dic6φ: Dic6⋊C4/C4×Dic3C2 ⊆ Aut C396C3:1(Dic6:C4)288,485
C32(Dic6⋊C4) = Dic36Dic6φ: Dic6⋊C4/C4×Dic3C2 ⊆ Aut C396C3:2(Dic6:C4)288,492
C33(Dic6⋊C4) = C62.8C23φ: Dic6⋊C4/Dic3⋊C4C2 ⊆ Aut C396C3:3(Dic6:C4)288,486
C34(Dic6⋊C4) = C62.231C23φ: Dic6⋊C4/C3×C4⋊C4C2 ⊆ Aut C3288C3:4(Dic6:C4)288,744
C35(Dic6⋊C4) = C62.13C23φ: Dic6⋊C4/C2×Dic6C2 ⊆ Aut C396C3:5(Dic6:C4)288,491

Non-split extensions G=N.Q with N=C3 and Q=Dic6⋊C4
extensionφ:Q→Aut NdρLabelID
C3.(Dic6⋊C4) = Dic93Q8φ: Dic6⋊C4/C3×C4⋊C4C2 ⊆ Aut C3288C3.(Dic6:C4)288,97

׿
×
𝔽