Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3.Q8

Direct product G=N×Q with N=C3 and Q=Dic3.Q8
dρLabelID
C3×Dic3.Q896C3xDic3.Q8288,660

Semidirect products G=N:Q with N=C3 and Q=Dic3.Q8
extensionφ:Q→Aut NdρLabelID
C31(Dic3.Q8) = C62.37C23φ: Dic3.Q8/C4×Dic3C2 ⊆ Aut C396C3:1(Dic3.Q8)288,515
C32(Dic3.Q8) = Dic3.Dic6φ: Dic3.Q8/Dic3⋊C4C2 ⊆ Aut C396C3:2(Dic3.Q8)288,493
C33(Dic3.Q8) = C62.16C23φ: Dic3.Q8/Dic3⋊C4C2 ⊆ Aut C396C3:3(Dic3.Q8)288,494
C34(Dic3.Q8) = C62.40C23φ: Dic3.Q8/Dic3⋊C4C2 ⊆ Aut C396C3:4(Dic3.Q8)288,518
C35(Dic3.Q8) = C62.17C23φ: Dic3.Q8/C4⋊Dic3C2 ⊆ Aut C396C3:5(Dic3.Q8)288,495
C36(Dic3.Q8) = C62.233C23φ: Dic3.Q8/C3×C4⋊C4C2 ⊆ Aut C3288C3:6(Dic3.Q8)288,746

Non-split extensions G=N.Q with N=C3 and Q=Dic3.Q8
extensionφ:Q→Aut NdρLabelID
C3.(Dic3.Q8) = Dic9.Q8φ: Dic3.Q8/C3×C4⋊C4C2 ⊆ Aut C3288C3.(Dic3.Q8)288,99

׿
×
𝔽