Extensions 1→N→G→Q→1 with N=Dic13 and Q=C6

Direct product G=N×Q with N=Dic13 and Q=C6
dρLabelID
C6×Dic13312C6xDic13312,30

Semidirect products G=N:Q with N=Dic13 and Q=C6
extensionφ:Q→Out NdρLabelID
Dic13⋊C6 = D26⋊C6φ: C6/C1C6 ⊆ Out Dic13526Dic13:C6312,12
Dic132C6 = C4×C13⋊C6φ: C6/C2C3 ⊆ Out Dic13526Dic13:2C6312,9
Dic133C6 = C2×C26.C6φ: C6/C2C3 ⊆ Out Dic13104Dic13:3C6312,11
Dic134C6 = C3×C13⋊D4φ: C6/C3C2 ⊆ Out Dic131562Dic13:4C6312,31
Dic135C6 = C12×D13φ: trivial image1562Dic13:5C6312,28

Non-split extensions G=N.Q with N=Dic13 and Q=C6
extensionφ:Q→Out NdρLabelID
Dic13.1C6 = C13⋊C24φ: C6/C1C6 ⊆ Out Dic1310412-Dic13.1C6312,7
Dic13.2C6 = Dic26⋊C3φ: C6/C1C6 ⊆ Out Dic131046-Dic13.2C6312,8
Dic13.3C6 = C3×Dic26φ: C6/C3C2 ⊆ Out Dic133122Dic13.3C6312,27
Dic13.4C6 = C3×C13⋊C8φ: C6/C3C2 ⊆ Out Dic133124Dic13.4C6312,13

׿
×
𝔽