Extensions 1→N→G→Q→1 with N=C2×C38 and Q=C4

Direct product G=N×Q with N=C2×C38 and Q=C4
dρLabelID
C22×C76304C2^2xC76304,37

Semidirect products G=N:Q with N=C2×C38 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C38)⋊1C4 = C22⋊C4×C19φ: C4/C2C2 ⊆ Aut C2×C38152(C2xC38):1C4304,20
(C2×C38)⋊2C4 = C23.D19φ: C4/C2C2 ⊆ Aut C2×C38152(C2xC38):2C4304,18
(C2×C38)⋊3C4 = C22×Dic19φ: C4/C2C2 ⊆ Aut C2×C38304(C2xC38):3C4304,35

Non-split extensions G=N.Q with N=C2×C38 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C38).1C4 = M4(2)×C19φ: C4/C2C2 ⊆ Aut C2×C381522(C2xC38).1C4304,23
(C2×C38).2C4 = C2×C19⋊C8φ: C4/C2C2 ⊆ Aut C2×C38304(C2xC38).2C4304,8
(C2×C38).3C4 = C76.C4φ: C4/C2C2 ⊆ Aut C2×C381522(C2xC38).3C4304,9

׿
×
𝔽