Extensions 1→N→G→Q→1 with N=C2xC76 and Q=C2

Direct product G=NxQ with N=C2xC76 and Q=C2
dρLabelID
C22xC76304C2^2xC76304,37

Semidirect products G=N:Q with N=C2xC76 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC76):1C2 = D38:C4φ: C2/C1C2 ⊆ Aut C2xC76152(C2xC76):1C2304,13
(C2xC76):2C2 = C22:C4xC19φ: C2/C1C2 ⊆ Aut C2xC76152(C2xC76):2C2304,20
(C2xC76):3C2 = C2xD76φ: C2/C1C2 ⊆ Aut C2xC76152(C2xC76):3C2304,29
(C2xC76):4C2 = D76:5C2φ: C2/C1C2 ⊆ Aut C2xC761522(C2xC76):4C2304,30
(C2xC76):5C2 = C2xC4xD19φ: C2/C1C2 ⊆ Aut C2xC76152(C2xC76):5C2304,28
(C2xC76):6C2 = D4xC38φ: C2/C1C2 ⊆ Aut C2xC76152(C2xC76):6C2304,38
(C2xC76):7C2 = C4oD4xC19φ: C2/C1C2 ⊆ Aut C2xC761522(C2xC76):7C2304,40

Non-split extensions G=N.Q with N=C2xC76 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC76).1C2 = Dic19:C4φ: C2/C1C2 ⊆ Aut C2xC76304(C2xC76).1C2304,11
(C2xC76).2C2 = C4:C4xC19φ: C2/C1C2 ⊆ Aut C2xC76304(C2xC76).2C2304,21
(C2xC76).3C2 = C76:C4φ: C2/C1C2 ⊆ Aut C2xC76304(C2xC76).3C2304,12
(C2xC76).4C2 = C2xDic38φ: C2/C1C2 ⊆ Aut C2xC76304(C2xC76).4C2304,27
(C2xC76).5C2 = C76.C4φ: C2/C1C2 ⊆ Aut C2xC761522(C2xC76).5C2304,9
(C2xC76).6C2 = C2xC19:C8φ: C2/C1C2 ⊆ Aut C2xC76304(C2xC76).6C2304,8
(C2xC76).7C2 = C4xDic19φ: C2/C1C2 ⊆ Aut C2xC76304(C2xC76).7C2304,10
(C2xC76).8C2 = M4(2)xC19φ: C2/C1C2 ⊆ Aut C2xC761522(C2xC76).8C2304,23
(C2xC76).9C2 = Q8xC38φ: C2/C1C2 ⊆ Aut C2xC76304(C2xC76).9C2304,39

׿
x
:
Z
F
o
wr
Q
<