Extensions 1→N→G→Q→1 with N=D8 and Q=C2xC10

Direct product G=NxQ with N=D8 and Q=C2xC10
dρLabelID
D8xC2xC10160D8xC2xC10320,1571

Semidirect products G=N:Q with N=D8 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
D8:1(C2xC10) = C10xD16φ: C2xC10/C10C2 ⊆ Out D8160D8:1(C2xC10)320,1006
D8:2(C2xC10) = C5xC16:C22φ: C2xC10/C10C2 ⊆ Out D8804D8:2(C2xC10)320,1010
D8:3(C2xC10) = C10xC8:C22φ: C2xC10/C10C2 ⊆ Out D880D8:3(C2xC10)320,1575
D8:4(C2xC10) = C5xD8:C22φ: C2xC10/C10C2 ⊆ Out D8804D8:4(C2xC10)320,1577
D8:5(C2xC10) = C5xD4oSD16φ: C2xC10/C10C2 ⊆ Out D8804D8:5(C2xC10)320,1579
D8:6(C2xC10) = C10xC4oD8φ: trivial image160D8:6(C2xC10)320,1574
D8:7(C2xC10) = C5xD4oD8φ: trivial image804D8:7(C2xC10)320,1578

Non-split extensions G=N.Q with N=D8 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
D8.1(C2xC10) = C10xSD32φ: C2xC10/C10C2 ⊆ Out D8160D8.1(C2xC10)320,1007
D8.2(C2xC10) = C5xC4oD16φ: C2xC10/C10C2 ⊆ Out D81602D8.2(C2xC10)320,1009
D8.3(C2xC10) = C5xQ32:C2φ: C2xC10/C10C2 ⊆ Out D81604D8.3(C2xC10)320,1011
D8.4(C2xC10) = C5xQ8oD8φ: trivial image1604D8.4(C2xC10)320,1580

׿
x
:
Z
F
o
wr
Q
<