Extensions 1→N→G→Q→1 with N=C5×2- 1+4 and Q=C2

Direct product G=N×Q with N=C5×2- 1+4 and Q=C2
dρLabelID
C10×2- 1+4160C10xES-(2,2)320,1633

Semidirect products G=N:Q with N=C5×2- 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×2- 1+4)⋊1C2 = 2- 1+42D5φ: C2/C1C2 ⊆ Out C5×2- 1+4808+(C5xES-(2,2)):1C2320,872
(C5×2- 1+4)⋊2C2 = D20.34C23φ: C2/C1C2 ⊆ Out C5×2- 1+4808+(C5xES-(2,2)):2C2320,1509
(C5×2- 1+4)⋊3C2 = D20.35C23φ: C2/C1C2 ⊆ Out C5×2- 1+41608-(C5xES-(2,2)):3C2320,1510
(C5×2- 1+4)⋊4C2 = D5×2- 1+4φ: C2/C1C2 ⊆ Out C5×2- 1+4808-(C5xES-(2,2)):4C2320,1624
(C5×2- 1+4)⋊5C2 = D20.39C23φ: C2/C1C2 ⊆ Out C5×2- 1+4808+(C5xES-(2,2)):5C2320,1625
(C5×2- 1+4)⋊6C2 = C5×D4.8D4φ: C2/C1C2 ⊆ Out C5×2- 1+4804(C5xES-(2,2)):6C2320,955
(C5×2- 1+4)⋊7C2 = C5×D4○SD16φ: C2/C1C2 ⊆ Out C5×2- 1+4804(C5xES-(2,2)):7C2320,1579
(C5×2- 1+4)⋊8C2 = C5×Q8○D8φ: C2/C1C2 ⊆ Out C5×2- 1+41604(C5xES-(2,2)):8C2320,1580
(C5×2- 1+4)⋊9C2 = C5×C2.C25φ: trivial image804(C5xES-(2,2)):9C2320,1634

Non-split extensions G=N.Q with N=C5×2- 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×2- 1+4).1C2 = 2- 1+4.2D5φ: C2/C1C2 ⊆ Out C5×2- 1+4808-(C5xES-(2,2)).1C2320,873
(C5×2- 1+4).2C2 = C5×D4.10D4φ: C2/C1C2 ⊆ Out C5×2- 1+4804(C5xES-(2,2)).2C2320,957

׿
×
𝔽