Extensions 1→N→G→Q→1 with N=D5×SD16 and Q=C2

Direct product G=N×Q with N=D5×SD16 and Q=C2
dρLabelID
C2×D5×SD1680C2xD5xSD16320,1430

Semidirect products G=N:Q with N=D5×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×SD16)⋊1C2 = D5×C8⋊C22φ: C2/C1C2 ⊆ Out D5×SD16408+(D5xSD16):1C2320,1444
(D5×SD16)⋊2C2 = D86D10φ: C2/C1C2 ⊆ Out D5×SD16808-(D5xSD16):2C2320,1447
(D5×SD16)⋊3C2 = D5×C8.C22φ: C2/C1C2 ⊆ Out D5×SD16808-(D5xSD16):3C2320,1448
(D5×SD16)⋊4C2 = C40.C23φ: C2/C1C2 ⊆ Out D5×SD16808+(D5xSD16):4C2320,1450
(D5×SD16)⋊5C2 = D20.29D4φ: C2/C1C2 ⊆ Out D5×SD16804(D5xSD16):5C2320,1434
(D5×SD16)⋊6C2 = D811D10φ: C2/C1C2 ⊆ Out D5×SD16804(D5xSD16):6C2320,1442
(D5×SD16)⋊7C2 = D5×C4○D8φ: trivial image804(D5xSD16):7C2320,1439

Non-split extensions G=N.Q with N=D5×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×SD16).1C2 = SD16⋊F5φ: C2/C1C2 ⊆ Out D5×SD16408(D5xSD16).1C2320,1073
(D5×SD16).2C2 = SD16×F5φ: C2/C1C2 ⊆ Out D5×SD16408(D5xSD16).2C2320,1072

׿
×
𝔽