Extensions 1→N→G→Q→1 with N=C8 and Q=C5⋊C8

Direct product G=N×Q with N=C8 and Q=C5⋊C8
dρLabelID
C8×C5⋊C8320C8xC5:C8320,216

Semidirect products G=N:Q with N=C8 and Q=C5⋊C8
extensionφ:Q→Aut NdρLabelID
C81(C5⋊C8) = C401C8φ: C5⋊C8/Dic5C2 ⊆ Aut C8320C8:1(C5:C8)320,220
C82(C5⋊C8) = C402C8φ: C5⋊C8/Dic5C2 ⊆ Aut C8320C8:2(C5:C8)320,219
C83(C5⋊C8) = C40⋊C8φ: C5⋊C8/Dic5C2 ⊆ Aut C8320C8:3(C5:C8)320,217

Non-split extensions G=N.Q with N=C8 and Q=C5⋊C8
extensionφ:Q→Aut NdρLabelID
C8.1(C5⋊C8) = C40.1C8φ: C5⋊C8/Dic5C2 ⊆ Aut C8804C8.1(C5:C8)320,227
C8.2(C5⋊C8) = C5⋊M6(2)φ: C5⋊C8/Dic5C2 ⊆ Aut C81604C8.2(C5:C8)320,215
C8.3(C5⋊C8) = C40.C8φ: C5⋊C8/Dic5C2 ⊆ Aut C8320C8.3(C5:C8)320,224
C8.4(C5⋊C8) = C5⋊C64central extension (φ=1)3204C8.4(C5:C8)320,3
C8.5(C5⋊C8) = C2×C5⋊C32central extension (φ=1)320C8.5(C5:C8)320,214
C8.6(C5⋊C8) = Dic5⋊C16central extension (φ=1)320C8.6(C5:C8)320,223

׿
×
𝔽