Extensions 1→N→G→Q→1 with N=C2×D8 and Q=D5

Direct product G=N×Q with N=C2×D8 and Q=D5
dρLabelID
C2×D5×D880C2xD5xD8320,1426

Semidirect products G=N:Q with N=C2×D8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×D8)⋊1D5 = C2×C5⋊D16φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8):1D5320,773
(C2×D8)⋊2D5 = Dic5⋊D8φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8):2D5320,777
(C2×D8)⋊3D5 = C405D4φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8):3D5320,778
(C2×D8)⋊4D5 = D20⋊D4φ: D5/C5C2 ⊆ Out C2×D880(C2xD8):4D5320,783
(C2×D8)⋊5D5 = C406D4φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8):5D5320,784
(C2×D8)⋊6D5 = Dic10⋊D4φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8):6D5320,785
(C2×D8)⋊7D5 = D8.D10φ: D5/C5C2 ⊆ Out C2×D8804(C2xD8):7D5320,774
(C2×D8)⋊8D5 = C4011D4φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8):8D5320,781
(C2×D8)⋊9D5 = C4012D4φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8):9D5320,786
(C2×D8)⋊10D5 = C40.23D4φ: D5/C5C2 ⊆ Out C2×D8804(C2xD8):10D5320,787
(C2×D8)⋊11D5 = C2×D8⋊D5φ: D5/C5C2 ⊆ Out C2×D880(C2xD8):11D5320,1427
(C2×D8)⋊12D5 = D813D10φ: D5/C5C2 ⊆ Out C2×D8804(C2xD8):12D5320,1429
(C2×D8)⋊13D5 = C2×D83D5φ: trivial image160(C2xD8):13D5320,1428

Non-split extensions G=N.Q with N=C2×D8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×D8).1D5 = C10.D16φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8).1D5320,120
(C2×D8).2D5 = C2×D8.D5φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8).2D5320,775
(C2×D8).3D5 = (C2×D8).D5φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8).3D5320,780
(C2×D8).4D5 = C40.22D4φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8).4D5320,782
(C2×D8).5D5 = D8.Dic5φ: D5/C5C2 ⊆ Out C2×D8804(C2xD8).5D5320,121
(C2×D8).6D5 = D8⋊Dic5φ: D5/C5C2 ⊆ Out C2×D8160(C2xD8).6D5320,779
(C2×D8).7D5 = D8×Dic5φ: trivial image160(C2xD8).7D5320,776

׿
×
𝔽