Extensions 1→N→G→Q→1 with N=2+ 1+4 and Q=D5

Direct product G=N×Q with N=2+ 1+4 and Q=D5
dρLabelID
D5×2+ 1+4408+D5xES+(2,2)320,1622

Semidirect products G=N:Q with N=2+ 1+4 and Q=D5
extensionφ:Q→Out NdρLabelID
2+ 1+41D5 = 2+ 1+4⋊D5φ: D5/C5C2 ⊆ Out 2+ 1+4408+ES+(2,2):1D5320,868
2+ 1+42D5 = 2+ 1+42D5φ: D5/C5C2 ⊆ Out 2+ 1+4408+ES+(2,2):2D5320,871
2+ 1+43D5 = D20.32C23φ: D5/C5C2 ⊆ Out 2+ 1+4808+ES+(2,2):3D5320,1507
2+ 1+44D5 = D20.33C23φ: D5/C5C2 ⊆ Out 2+ 1+4808-ES+(2,2):4D5320,1508
2+ 1+45D5 = D20.37C23φ: trivial image808-ES+(2,2):5D5320,1623

Non-split extensions G=N.Q with N=2+ 1+4 and Q=D5
extensionφ:Q→Out NdρLabelID
2+ 1+4.1D5 = 2+ 1+4.D5φ: D5/C5C2 ⊆ Out 2+ 1+4808-ES+(2,2).1D5320,869
2+ 1+4.2D5 = 2+ 1+4.2D5φ: D5/C5C2 ⊆ Out 2+ 1+4808-ES+(2,2).2D5320,870

׿
×
𝔽