Extensions 1→N→G→Q→1 with N=D4.9D10 and Q=C2

Direct product G=N×Q with N=D4.9D10 and Q=C2
dρLabelID
C2×D4.9D10160C2xD4.9D10320,1495

Semidirect products G=N:Q with N=D4.9D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.9D101C2 = M4(2)⋊D10φ: C2/C1C2 ⊆ Out D4.9D10804D4.9D10:1C2320,452
D4.9D102C2 = D4.9D20φ: C2/C1C2 ⊆ Out D4.9D10804-D4.9D10:2C2320,453
D4.9D103C2 = D4.3D20φ: C2/C1C2 ⊆ Out D4.9D10804D4.9D10:3C2320,768
D4.9D104C2 = M4(2).13D10φ: C2/C1C2 ⊆ Out D4.9D10808-D4.9D10:4C2320,827
D4.9D105C2 = 2+ 1+4.D5φ: C2/C1C2 ⊆ Out D4.9D10808-D4.9D10:5C2320,869
D4.9D106C2 = 2- 1+4.2D5φ: C2/C1C2 ⊆ Out D4.9D10808-D4.9D10:6C2320,873
D4.9D107C2 = D811D10φ: C2/C1C2 ⊆ Out D4.9D10804D4.9D10:7C2320,1442
D4.9D108C2 = D20.47D4φ: C2/C1C2 ⊆ Out D4.9D101604-D4.9D10:8C2320,1443
D4.9D109C2 = SD16⋊D10φ: C2/C1C2 ⊆ Out D4.9D10808-D4.9D10:9C2320,1445
D4.9D1010C2 = D5×C8.C22φ: C2/C1C2 ⊆ Out D4.9D10808-D4.9D10:10C2320,1448
D4.9D1011C2 = D20.33C23φ: C2/C1C2 ⊆ Out D4.9D10808-D4.9D10:11C2320,1508
D4.9D1012C2 = D20.35C23φ: C2/C1C2 ⊆ Out D4.9D101608-D4.9D10:12C2320,1510
D4.9D1013C2 = C20.C24φ: trivial image804D4.9D10:13C2320,1494

Non-split extensions G=N.Q with N=D4.9D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.9D10.1C2 = D4.5D20φ: C2/C1C2 ⊆ Out D4.9D101604-D4.9D10.1C2320,770
D4.9D10.2C2 = M4(2).16D10φ: C2/C1C2 ⊆ Out D4.9D101608-D4.9D10.2C2320,831

׿
×
𝔽