Extensions 1→N→G→Q→1 with N=C2 and Q=C4×C5⋊C8

Direct product G=N×Q with N=C2 and Q=C4×C5⋊C8
dρLabelID
C2×C4×C5⋊C8320C2xC4xC5:C8320,1084


Non-split extensions G=N.Q with N=C2 and Q=C4×C5⋊C8
extensionφ:Q→Aut NdρLabelID
C2.1(C4×C5⋊C8) = C4×C5⋊C16central extension (φ=1)320C2.1(C4xC5:C8)320,195
C2.2(C4×C5⋊C8) = C8×C5⋊C8central extension (φ=1)320C2.2(C4xC5:C8)320,216
C2.3(C4×C5⋊C8) = Dic5⋊C16central extension (φ=1)320C2.3(C4xC5:C8)320,223
C2.4(C4×C5⋊C8) = C42.4F5central stem extension (φ=1)320C2.4(C4xC5:C8)320,197
C2.5(C4×C5⋊C8) = C40⋊C8central stem extension (φ=1)320C2.5(C4xC5:C8)320,217
C2.6(C4×C5⋊C8) = C40.C8central stem extension (φ=1)320C2.6(C4xC5:C8)320,224
C2.7(C4×C5⋊C8) = C10.(C4⋊C8)central stem extension (φ=1)320C2.7(C4xC5:C8)320,256

׿
×
𝔽