Aliases: 2- 1+4.C10, C4.(C24⋊C5), C2.C25⋊C5, 2- 1+4⋊C5⋊2C2, C2.3(C2×C24⋊C5), SmallGroup(320,1586)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — 2- 1+4 — 2- 1+4.C10 |
C1 — C2 — 2- 1+4 — 2- 1+4⋊C5 — 2- 1+4.C10 |
2- 1+4 — 2- 1+4.C10 |
Generators and relations for 2- 1+4.C10
G = < a,b,c,d,e | a4=b2=1, c2=d2=e10=a2, bab=a-1, ebe-1=ac=ca, ad=da, eae-1=cd, bc=cb, bd=db, dcd-1=a2c, ece-1=a-1bcd, ede-1=a >
Subgroups: 515 in 90 conjugacy classes, 7 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C2×C4, D4, Q8, C23, C10, C22×C4, C2×D4, C2×Q8, C4○D4, C20, C2×C4○D4, 2+ 1+4, 2- 1+4, 2- 1+4, C2.C25, 2- 1+4⋊C5, 2- 1+4.C10
Quotients: C1, C2, C5, C10, C24⋊C5, C2×C24⋊C5, 2- 1+4.C10
Character table of 2- 1+4.C10
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 10 | 10 | 10 | 1 | 1 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ54 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ5 | linear of order 5 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ53 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ52 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ52 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ53 | linear of order 5 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | -ζ5 | -ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ5 | -ζ54 | linear of order 10 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ5 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ54 | linear of order 5 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | -ζ53 | -ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ53 | -ζ52 | linear of order 10 |
ρ9 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | -ζ54 | -ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ54 | -ζ5 | linear of order 10 |
ρ10 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | -ζ52 | -ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ52 | -ζ53 | linear of order 10 |
ρ11 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | i | -i | i | -i | -i | complex faithful |
ρ12 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | -i | i | -i | i | i | complex faithful |
ρ13 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | -ζ52 | -ζ54 | -ζ53 | -ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ4ζ54 | ζ4ζ5 | ζ43ζ52 | ζ4ζ52 | ζ43ζ53 | ζ4ζ53 | ζ43ζ54 | ζ43ζ5 | complex faithful |
ρ14 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | -ζ54 | -ζ53 | -ζ5 | -ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ4ζ53 | ζ4ζ52 | ζ43ζ54 | ζ4ζ54 | ζ43ζ5 | ζ4ζ5 | ζ43ζ53 | ζ43ζ52 | complex faithful |
ρ15 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | -ζ53 | -ζ5 | -ζ52 | -ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ43ζ5 | ζ43ζ54 | ζ4ζ53 | ζ43ζ53 | ζ4ζ52 | ζ43ζ52 | ζ4ζ5 | ζ4ζ54 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | -ζ54 | -ζ53 | -ζ5 | -ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ43ζ53 | ζ43ζ52 | ζ4ζ54 | ζ43ζ54 | ζ4ζ5 | ζ43ζ5 | ζ4ζ53 | ζ4ζ52 | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | -ζ5 | -ζ52 | -ζ54 | -ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ43ζ52 | ζ43ζ53 | ζ4ζ5 | ζ43ζ5 | ζ4ζ54 | ζ43ζ54 | ζ4ζ52 | ζ4ζ53 | complex faithful |
ρ18 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | -ζ5 | -ζ52 | -ζ54 | -ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ4ζ52 | ζ4ζ53 | ζ43ζ5 | ζ4ζ5 | ζ43ζ54 | ζ4ζ54 | ζ43ζ52 | ζ43ζ53 | complex faithful |
ρ19 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | -ζ53 | -ζ5 | -ζ52 | -ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ4ζ5 | ζ4ζ54 | ζ43ζ53 | ζ4ζ53 | ζ43ζ52 | ζ4ζ52 | ζ43ζ5 | ζ43ζ54 | complex faithful |
ρ20 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | -ζ52 | -ζ54 | -ζ53 | -ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ43ζ54 | ζ43ζ5 | ζ4ζ52 | ζ43ζ52 | ζ4ζ53 | ζ43ζ53 | ζ4ζ54 | ζ4ζ5 | complex faithful |
ρ21 | 5 | 5 | 1 | -1 | 3 | -5 | -5 | -1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ22 | 5 | 5 | 1 | -3 | 1 | 5 | 5 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ23 | 5 | 5 | -3 | 1 | 1 | 5 | 5 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ24 | 5 | 5 | 1 | 3 | -1 | -5 | -5 | -1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ25 | 5 | 5 | -3 | -1 | -1 | -5 | -5 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ26 | 5 | 5 | 1 | 1 | -3 | 5 | 5 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
(1 34 3 44)(2 39 4 29)(5 23 15 13)(6 28 16 38)(7 25 17 35)(8 20 18 10)(9 48 19 58)(11 33 21 43)(12 30 22 40)(14 53 24 63)(26 59 36 49)(27 62 37 52)(31 64 41 54)(32 47 42 57)(45 51 55 61)(46 50 56 60)
(1 10)(2 15)(3 20)(4 5)(6 57)(7 41)(8 44)(9 46)(11 62)(12 26)(13 29)(14 51)(16 47)(17 31)(18 34)(19 56)(21 52)(22 36)(23 39)(24 61)(25 64)(27 33)(28 42)(30 49)(32 38)(35 54)(37 43)(40 59)(45 53)(48 60)(50 58)(55 63)
(1 63 3 53)(2 48 4 58)(5 50 15 60)(6 22 16 12)(7 21 17 11)(8 61 18 51)(9 39 19 29)(10 55 20 45)(13 46 23 56)(14 44 24 34)(25 43 35 33)(26 57 36 47)(27 64 37 54)(28 40 38 30)(31 62 41 52)(32 49 42 59)
(1 30 3 40)(2 35 4 25)(5 64 15 54)(6 24 16 14)(7 29 17 39)(8 26 18 36)(9 21 19 11)(10 49 20 59)(12 34 22 44)(13 31 23 41)(27 60 37 50)(28 63 38 53)(32 45 42 55)(33 48 43 58)(46 52 56 62)(47 51 57 61)
(1 2 3 4)(5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,34,3,44)(2,39,4,29)(5,23,15,13)(6,28,16,38)(7,25,17,35)(8,20,18,10)(9,48,19,58)(11,33,21,43)(12,30,22,40)(14,53,24,63)(26,59,36,49)(27,62,37,52)(31,64,41,54)(32,47,42,57)(45,51,55,61)(46,50,56,60), (1,10)(2,15)(3,20)(4,5)(6,57)(7,41)(8,44)(9,46)(11,62)(12,26)(13,29)(14,51)(16,47)(17,31)(18,34)(19,56)(21,52)(22,36)(23,39)(24,61)(25,64)(27,33)(28,42)(30,49)(32,38)(35,54)(37,43)(40,59)(45,53)(48,60)(50,58)(55,63), (1,63,3,53)(2,48,4,58)(5,50,15,60)(6,22,16,12)(7,21,17,11)(8,61,18,51)(9,39,19,29)(10,55,20,45)(13,46,23,56)(14,44,24,34)(25,43,35,33)(26,57,36,47)(27,64,37,54)(28,40,38,30)(31,62,41,52)(32,49,42,59), (1,30,3,40)(2,35,4,25)(5,64,15,54)(6,24,16,14)(7,29,17,39)(8,26,18,36)(9,21,19,11)(10,49,20,59)(12,34,22,44)(13,31,23,41)(27,60,37,50)(28,63,38,53)(32,45,42,55)(33,48,43,58)(46,52,56,62)(47,51,57,61), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;
G:=Group( (1,34,3,44)(2,39,4,29)(5,23,15,13)(6,28,16,38)(7,25,17,35)(8,20,18,10)(9,48,19,58)(11,33,21,43)(12,30,22,40)(14,53,24,63)(26,59,36,49)(27,62,37,52)(31,64,41,54)(32,47,42,57)(45,51,55,61)(46,50,56,60), (1,10)(2,15)(3,20)(4,5)(6,57)(7,41)(8,44)(9,46)(11,62)(12,26)(13,29)(14,51)(16,47)(17,31)(18,34)(19,56)(21,52)(22,36)(23,39)(24,61)(25,64)(27,33)(28,42)(30,49)(32,38)(35,54)(37,43)(40,59)(45,53)(48,60)(50,58)(55,63), (1,63,3,53)(2,48,4,58)(5,50,15,60)(6,22,16,12)(7,21,17,11)(8,61,18,51)(9,39,19,29)(10,55,20,45)(13,46,23,56)(14,44,24,34)(25,43,35,33)(26,57,36,47)(27,64,37,54)(28,40,38,30)(31,62,41,52)(32,49,42,59), (1,30,3,40)(2,35,4,25)(5,64,15,54)(6,24,16,14)(7,29,17,39)(8,26,18,36)(9,21,19,11)(10,49,20,59)(12,34,22,44)(13,31,23,41)(27,60,37,50)(28,63,38,53)(32,45,42,55)(33,48,43,58)(46,52,56,62)(47,51,57,61), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,34,3,44),(2,39,4,29),(5,23,15,13),(6,28,16,38),(7,25,17,35),(8,20,18,10),(9,48,19,58),(11,33,21,43),(12,30,22,40),(14,53,24,63),(26,59,36,49),(27,62,37,52),(31,64,41,54),(32,47,42,57),(45,51,55,61),(46,50,56,60)], [(1,10),(2,15),(3,20),(4,5),(6,57),(7,41),(8,44),(9,46),(11,62),(12,26),(13,29),(14,51),(16,47),(17,31),(18,34),(19,56),(21,52),(22,36),(23,39),(24,61),(25,64),(27,33),(28,42),(30,49),(32,38),(35,54),(37,43),(40,59),(45,53),(48,60),(50,58),(55,63)], [(1,63,3,53),(2,48,4,58),(5,50,15,60),(6,22,16,12),(7,21,17,11),(8,61,18,51),(9,39,19,29),(10,55,20,45),(13,46,23,56),(14,44,24,34),(25,43,35,33),(26,57,36,47),(27,64,37,54),(28,40,38,30),(31,62,41,52),(32,49,42,59)], [(1,30,3,40),(2,35,4,25),(5,64,15,54),(6,24,16,14),(7,29,17,39),(8,26,18,36),(9,21,19,11),(10,49,20,59),(12,34,22,44),(13,31,23,41),(27,60,37,50),(28,63,38,53),(32,45,42,55),(33,48,43,58),(46,52,56,62),(47,51,57,61)], [(1,2,3,4),(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])
Matrix representation of 2- 1+4.C10 ►in GL4(𝔽5) generated by
3 | 0 | 3 | 1 |
4 | 2 | 2 | 4 |
1 | 1 | 3 | 0 |
2 | 2 | 2 | 2 |
4 | 0 | 0 | 4 |
4 | 0 | 4 | 4 |
1 | 4 | 0 | 0 |
0 | 0 | 0 | 1 |
2 | 1 | 4 | 0 |
2 | 3 | 4 | 1 |
2 | 0 | 2 | 1 |
2 | 3 | 2 | 3 |
2 | 4 | 3 | 1 |
1 | 4 | 2 | 4 |
0 | 4 | 0 | 1 |
1 | 4 | 1 | 4 |
3 | 2 | 0 | 2 |
0 | 1 | 3 | 3 |
0 | 4 | 0 | 2 |
0 | 3 | 0 | 3 |
G:=sub<GL(4,GF(5))| [3,4,1,2,0,2,1,2,3,2,3,2,1,4,0,2],[4,4,1,0,0,0,4,0,0,4,0,0,4,4,0,1],[2,2,2,2,1,3,0,3,4,4,2,2,0,1,1,3],[2,1,0,1,4,4,4,4,3,2,0,1,1,4,1,4],[3,0,0,0,2,1,4,3,0,3,0,0,2,3,2,3] >;
2- 1+4.C10 in GAP, Magma, Sage, TeX
2_-^{1+4}.C_{10}
% in TeX
G:=Group("ES-(2,2).C10");
// GroupNames label
G:=SmallGroup(320,1586);
// by ID
G=gap.SmallGroup(320,1586);
# by ID
G:=PCGroup([7,-2,-5,-2,2,2,2,-2,1120,849,1270,521,248,1936,718,375,172,3162,1027]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=1,c^2=d^2=e^10=a^2,b*a*b=a^-1,e*b*e^-1=a*c=c*a,a*d=d*a,e*a*e^-1=c*d,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c,e*c*e^-1=a^-1*b*c*d,e*d*e^-1=a>;
// generators/relations
Export