Extensions 1→N→G→Q→1 with N=C9 and Q=C3×A4

Direct product G=N×Q with N=C9 and Q=C3×A4
dρLabelID
A4×C3×C9108A4xC3xC9324,126

Semidirect products G=N:Q with N=C9 and Q=C3×A4
extensionφ:Q→Aut NdρLabelID
C91(C3×A4) = A4×3- 1+2φ: C3×A4/A4C3 ⊆ Aut C9369C9:1(C3xA4)324,131
C92(C3×A4) = C3×C9⋊A4φ: C3×A4/C2×C6C3 ⊆ Aut C9108C9:2(C3xA4)324,127

Non-split extensions G=N.Q with N=C9 and Q=C3×A4
extensionφ:Q→Aut NdρLabelID
C9.(C3×A4) = C62.9C32φ: C3×A4/A4C3 ⊆ Aut C9549C9.(C3xA4)324,132
C9.2(C3×A4) = A4×C27central extension (φ=1)1083C9.2(C3xA4)324,42
C9.3(C3×A4) = C27⋊A4central extension (φ=1)1083C9.3(C3xA4)324,43
C9.4(C3×A4) = C3×C9.A4central extension (φ=1)162C9.4(C3xA4)324,44
C9.5(C3×A4) = C62.C9central extension (φ=1)543C9.5(C3xA4)324,45
C9.6(C3×A4) = C62.25C32central extension (φ=1)543C9.6(C3xA4)324,128

׿
×
𝔽