Copied to
clipboard

G = A4×3- 1+2order 324 = 22·34

Direct product of A4 and 3- 1+2

direct product, metabelian, soluble, monomial

Aliases: A4×3- 1+2, C62.8C32, C9⋊A41C3, C91(C3×A4), (C9×A4)⋊2C3, (C2×C18)⋊C32, C3.A42C32, C32.A48C3, C3.7(C32×A4), (C2×C6).6C33, C32.8(C3×A4), (C32×A4).3C3, (C3×A4).3C32, C222(C3×3- 1+2), (C22×3- 1+2)⋊5C3, SmallGroup(324,131)

Series: Derived Chief Lower central Upper central

C1C2×C6 — A4×3- 1+2
C1C22C2×C6C3×A4C32×A4 — A4×3- 1+2
C22C2×C6 — A4×3- 1+2
C1C33- 1+2

Generators and relations for A4×3- 1+2
 G = < a,b,c,d,e | a2=b2=c3=d9=e3=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >

Subgroups: 250 in 84 conjugacy classes, 39 normal (11 characteristic)
C1, C2, C3, C3, C22, C6, C9, C9, C32, C32, A4, A4, C2×C6, C2×C6, C18, C3×C6, C3×C9, 3- 1+2, 3- 1+2, C33, C3.A4, C2×C18, C3×A4, C3×A4, C3×A4, C62, C2×3- 1+2, C3×3- 1+2, C9×A4, C9⋊A4, C32.A4, C22×3- 1+2, C32×A4, A4×3- 1+2
Quotients: C1, C3, C32, A4, 3- 1+2, C33, C3×A4, C3×3- 1+2, C32×A4, A4×3- 1+2

Smallest permutation representation of A4×3- 1+2
On 36 points
Generators in S36
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 10)(9 11)(19 32)(20 33)(21 34)(22 35)(23 36)(24 28)(25 29)(26 30)(27 31)
(1 34)(2 35)(3 36)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)
(1 4 7)(2 5 8)(3 6 9)(10 35 25)(11 36 26)(12 28 27)(13 29 19)(14 30 20)(15 31 21)(16 32 22)(17 33 23)(18 34 24)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(29 35 32)(30 33 36)

G:=sub<Sym(36)| (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,32)(20,33)(21,34)(22,35)(23,36)(24,28)(25,29)(26,30)(27,31), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27), (1,4,7)(2,5,8)(3,6,9)(10,35,25)(11,36,26)(12,28,27)(13,29,19)(14,30,20)(15,31,21)(16,32,22)(17,33,23)(18,34,24), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)>;

G:=Group( (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,32)(20,33)(21,34)(22,35)(23,36)(24,28)(25,29)(26,30)(27,31), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27), (1,4,7)(2,5,8)(3,6,9)(10,35,25)(11,36,26)(12,28,27)(13,29,19)(14,30,20)(15,31,21)(16,32,22)(17,33,23)(18,34,24), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36) );

G=PermutationGroup([[(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,10),(9,11),(19,32),(20,33),(21,34),(22,35),(23,36),(24,28),(25,29),(26,30),(27,31)], [(1,34),(2,35),(3,36),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27)], [(1,4,7),(2,5,8),(3,6,9),(10,35,25),(11,36,26),(12,28,27),(13,29,19),(14,30,20),(15,31,21),(16,32,22),(17,33,23),(18,34,24)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(29,35,32),(30,33,36)]])

44 conjugacy classes

class 1  2 3A3B3C3D3E···3J3K3L3M3N6A6B6C6D9A···9F9G···9R18A···18F
order1233333···3333366669···99···918···18
size1311334···41212121233993···312···129···9

44 irreducible representations

dim11111133339
type++
imageC1C3C3C3C3C3A43- 1+2C3×A4C3×A4A4×3- 1+2
kernelA4×3- 1+2C9×A4C9⋊A4C32.A4C22×3- 1+2C32×A43- 1+2A4C9C32C1
# reps161242216622

Matrix representation of A4×3- 1+2 in GL6(𝔽19)

100000
010000
001000
000001
000181818
000100
,
100000
010000
001000
000010
000100
000181818
,
1100000
0110000
0011000
000100
000001
000181818
,
1160000
781000
780000
000100
000010
000001
,
100000
12110000
1107000
000100
000010
000001

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,1,0,0,0,0,18,0,0,0,0,1,18,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,18,0,0,0,1,0,18,0,0,0,0,0,18],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,18,0,0,0,0,0,18,0,0,0,0,1,18],[11,7,7,0,0,0,6,8,8,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,12,11,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

A4×3- 1+2 in GAP, Magma, Sage, TeX

A_4\times 3_-^{1+2}
% in TeX

G:=Group("A4xES-(3,1)");
// GroupNames label

G:=SmallGroup(324,131);
// by ID

G=gap.SmallGroup(324,131);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,224,68,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^9=e^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations

׿
×
𝔽