Extensions 1→N→G→Q→1 with N=C21 and Q=C2×Q8

Direct product G=N×Q with N=C21 and Q=C2×Q8
dρLabelID
Q8×C42336Q8xC42336,206

Semidirect products G=N:Q with N=C21 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
C211(C2×Q8) = D7×Dic6φ: C2×Q8/C4C22 ⊆ Aut C211684-C21:1(C2xQ8)336,137
C212(C2×Q8) = S3×Dic14φ: C2×Q8/C4C22 ⊆ Aut C211684-C21:2(C2xQ8)336,140
C213(C2×Q8) = D21⋊Q8φ: C2×Q8/C4C22 ⊆ Aut C211684C21:3(C2xQ8)336,143
C214(C2×Q8) = C2×C21⋊Q8φ: C2×Q8/C22C22 ⊆ Aut C21336C21:4(C2xQ8)336,160
C215(C2×Q8) = C2×Dic42φ: C2×Q8/C2×C4C2 ⊆ Aut C21336C21:5(C2xQ8)336,194
C216(C2×Q8) = C6×Dic14φ: C2×Q8/C2×C4C2 ⊆ Aut C21336C21:6(C2xQ8)336,174
C217(C2×Q8) = C14×Dic6φ: C2×Q8/C2×C4C2 ⊆ Aut C21336C21:7(C2xQ8)336,184
C218(C2×Q8) = Q8×D21φ: C2×Q8/Q8C2 ⊆ Aut C211684-C21:8(C2xQ8)336,200
C219(C2×Q8) = C3×Q8×D7φ: C2×Q8/Q8C2 ⊆ Aut C211684C21:9(C2xQ8)336,180
C2110(C2×Q8) = S3×C7×Q8φ: C2×Q8/Q8C2 ⊆ Aut C211684C21:10(C2xQ8)336,190


׿
×
𝔽