Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=S3

Direct product G=N×Q with N=C3×C3⋊S3 and Q=S3
dρLabelID
C3×S3×C3⋊S336C3xS3xC3:S3324,166

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊1S3 = C3×C32⋊D6φ: S3/C1S3 ⊆ Out C3×C3⋊S3186(C3xC3:S3):1S3324,117
(C3×C3⋊S3)⋊2S3 = He35D6φ: S3/C1S3 ⊆ Out C3×C3⋊S31812+(C3xC3:S3):2S3324,121
(C3×C3⋊S3)⋊3S3 = C3×C324D6φ: S3/C3C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3):3S3324,167
(C3×C3⋊S3)⋊4S3 = C3⋊S32φ: S3/C3C2 ⊆ Out C3×C3⋊S318(C3xC3:S3):4S3324,169
(C3×C3⋊S3)⋊5S3 = C3317D6φ: S3/C3C2 ⊆ Out C3×C3⋊S336(C3xC3:S3):5S3324,170

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).S3 = C32⋊D18φ: S3/C1S3 ⊆ Out C3×C3⋊S31812+(C3xC3:S3).S3324,37
(C3×C3⋊S3).2S3 = C3×C33⋊C4φ: S3/C3C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3).2S3324,162
(C3×C3⋊S3).3S3 = C323Dic9φ: S3/C3C2 ⊆ Out C3×C3⋊S3364(C3xC3:S3).3S3324,112
(C3×C3⋊S3).4S3 = D9×C3⋊S3φ: S3/C3C2 ⊆ Out C3×C3⋊S354(C3xC3:S3).4S3324,119
(C3×C3⋊S3).5S3 = C325D18φ: S3/C3C2 ⊆ Out C3×C3⋊S3364(C3xC3:S3).5S3324,123
(C3×C3⋊S3).6S3 = C34⋊C4φ: S3/C3C2 ⊆ Out C3×C3⋊S336(C3xC3:S3).6S3324,163

׿
×
𝔽