Extensions 1→N→G→Q→1 with N=C21 and Q=C4○D4

Direct product G=N×Q with N=C21 and Q=C4○D4
dρLabelID
C4○D4×C211682C4oD4xC21336,207

Semidirect products G=N:Q with N=C21 and Q=C4○D4
extensionφ:Q→Aut NdρLabelID
C211(C4○D4) = D285S3φ: C4○D4/C4C22 ⊆ Aut C211684-C21:1(C4oD4)336,138
C212(C4○D4) = D28⋊S3φ: C4○D4/C4C22 ⊆ Aut C211684C21:2(C4oD4)336,139
C213(C4○D4) = D12⋊D7φ: C4○D4/C4C22 ⊆ Aut C211684C21:3(C4oD4)336,141
C214(C4○D4) = D84⋊C2φ: C4○D4/C4C22 ⊆ Aut C211684+C21:4(C4oD4)336,142
C215(C4○D4) = D6.D14φ: C4○D4/C4C22 ⊆ Aut C211684C21:5(C4oD4)336,144
C216(C4○D4) = D125D7φ: C4○D4/C4C22 ⊆ Aut C211684-C21:6(C4oD4)336,145
C217(C4○D4) = D14.D6φ: C4○D4/C4C22 ⊆ Aut C211684+C21:7(C4oD4)336,146
C218(C4○D4) = Dic7.D6φ: C4○D4/C22C22 ⊆ Aut C211684C21:8(C4oD4)336,152
C219(C4○D4) = C42.C23φ: C4○D4/C22C22 ⊆ Aut C211684-C21:9(C4oD4)336,153
C2110(C4○D4) = Dic3.D14φ: C4○D4/C22C22 ⊆ Aut C211684C21:10(C4oD4)336,155
C2111(C4○D4) = D8411C2φ: C4○D4/C2×C4C2 ⊆ Aut C211682C21:11(C4oD4)336,197
C2112(C4○D4) = C3×C4○D28φ: C4○D4/C2×C4C2 ⊆ Aut C211682C21:12(C4oD4)336,177
C2113(C4○D4) = C7×C4○D12φ: C4○D4/C2×C4C2 ⊆ Aut C211682C21:13(C4oD4)336,187
C2114(C4○D4) = D42D21φ: C4○D4/D4C2 ⊆ Aut C211684-C21:14(C4oD4)336,199
C2115(C4○D4) = C3×D42D7φ: C4○D4/D4C2 ⊆ Aut C211684C21:15(C4oD4)336,179
C2116(C4○D4) = C7×D42S3φ: C4○D4/D4C2 ⊆ Aut C211684C21:16(C4oD4)336,189
C2117(C4○D4) = Q83D21φ: C4○D4/Q8C2 ⊆ Aut C211684+C21:17(C4oD4)336,201
C2118(C4○D4) = C3×Q82D7φ: C4○D4/Q8C2 ⊆ Aut C211684C21:18(C4oD4)336,181
C2119(C4○D4) = C7×Q83S3φ: C4○D4/Q8C2 ⊆ Aut C211684C21:19(C4oD4)336,191


׿
×
𝔽