Extensions 1→N→G→Q→1 with N=C6xDic7 and Q=C2

Direct product G=NxQ with N=C6xDic7 and Q=C2
dρLabelID
C2xC6xDic7336C2xC6xDic7336,182

Semidirect products G=N:Q with N=C6xDic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xDic7):1C2 = D6:Dic7φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):1C2336,43
(C6xDic7):2C2 = D42:C4φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):2C2336,44
(C6xDic7):3C2 = C2xS3xDic7φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):3C2336,154
(C6xDic7):4C2 = Dic3.D14φ: C2/C1C2 ⊆ Out C6xDic71684(C6xDic7):4C2336,155
(C6xDic7):5C2 = C2xD21:C4φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):5C2336,156
(C6xDic7):6C2 = C2xC7:D12φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):6C2336,159
(C6xDic7):7C2 = C3xD14:C4φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):7C2336,68
(C6xDic7):8C2 = C3xC23.D7φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):8C2336,73
(C6xDic7):9C2 = C3xD4:2D7φ: C2/C1C2 ⊆ Out C6xDic71684(C6xDic7):9C2336,179
(C6xDic7):10C2 = C6xC7:D4φ: C2/C1C2 ⊆ Out C6xDic7168(C6xDic7):10C2336,183
(C6xDic7):11C2 = D7xC2xC12φ: trivial image168(C6xDic7):11C2336,175

Non-split extensions G=N.Q with N=C6xDic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xDic7).1C2 = Dic3xDic7φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).1C2336,41
(C6xDic7).2C2 = C42.Q8φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).2C2336,45
(C6xDic7).3C2 = Dic21:C4φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).3C2336,46
(C6xDic7).4C2 = C14.Dic6φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).4C2336,47
(C6xDic7).5C2 = C2xC21:Q8φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).5C2336,160
(C6xDic7).6C2 = C3xDic7:C4φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).6C2336,66
(C6xDic7).7C2 = C3xC4:Dic7φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).7C2336,67
(C6xDic7).8C2 = C6xDic14φ: C2/C1C2 ⊆ Out C6xDic7336(C6xDic7).8C2336,174
(C6xDic7).9C2 = C12xDic7φ: trivial image336(C6xDic7).9C2336,65

׿
x
:
Z
F
o
wr
Q
<