Extensions 1→N→G→Q→1 with N=C7×Dic6 and Q=C2

Direct product G=N×Q with N=C7×Dic6 and Q=C2
dρLabelID
C14×Dic6336C14xDic6336,184

Semidirect products G=N:Q with N=C7×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic6)⋊1C2 = Dic6⋊D7φ: C2/C1C2 ⊆ Out C7×Dic61684+(C7xDic6):1C2336,37
(C7×Dic6)⋊2C2 = D7×Dic6φ: C2/C1C2 ⊆ Out C7×Dic61684-(C7xDic6):2C2336,137
(C7×Dic6)⋊3C2 = D14.D6φ: C2/C1C2 ⊆ Out C7×Dic61684+(C7xDic6):3C2336,146
(C7×Dic6)⋊4C2 = C28.D6φ: C2/C1C2 ⊆ Out C7×Dic61684(C7xDic6):4C2336,32
(C7×Dic6)⋊5C2 = D28⋊S3φ: C2/C1C2 ⊆ Out C7×Dic61684(C7xDic6):5C2336,139
(C7×Dic6)⋊6C2 = D21⋊Q8φ: C2/C1C2 ⊆ Out C7×Dic61684(C7xDic6):6C2336,143
(C7×Dic6)⋊7C2 = C7×C24⋊C2φ: C2/C1C2 ⊆ Out C7×Dic61682(C7xDic6):7C2336,76
(C7×Dic6)⋊8C2 = C7×D4.S3φ: C2/C1C2 ⊆ Out C7×Dic61684(C7xDic6):8C2336,86
(C7×Dic6)⋊9C2 = C7×D42S3φ: C2/C1C2 ⊆ Out C7×Dic61684(C7xDic6):9C2336,189
(C7×Dic6)⋊10C2 = S3×C7×Q8φ: C2/C1C2 ⊆ Out C7×Dic61684(C7xDic6):10C2336,190
(C7×Dic6)⋊11C2 = C7×C4○D12φ: trivial image1682(C7xDic6):11C2336,187

Non-split extensions G=N.Q with N=C7×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic6).1C2 = C7⋊Dic12φ: C2/C1C2 ⊆ Out C7×Dic63364-(C7xDic6).1C2336,40
(C7×Dic6).2C2 = C21⋊Q16φ: C2/C1C2 ⊆ Out C7×Dic63364(C7xDic6).2C2336,38
(C7×Dic6).3C2 = C7×Dic12φ: C2/C1C2 ⊆ Out C7×Dic63362(C7xDic6).3C2336,78
(C7×Dic6).4C2 = C7×C3⋊Q16φ: C2/C1C2 ⊆ Out C7×Dic63364(C7xDic6).4C2336,88

׿
×
𝔽