Extensions 1→N→G→Q→1 with N=S3×C28 and Q=C2

Direct product G=N×Q with N=S3×C28 and Q=C2
dρLabelID
S3×C2×C28168S3xC2xC28336,185

Semidirect products G=N:Q with N=S3×C28 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C28)⋊1C2 = D285S3φ: C2/C1C2 ⊆ Out S3×C281684-(S3xC28):1C2336,138
(S3×C28)⋊2C2 = D84⋊C2φ: C2/C1C2 ⊆ Out S3×C281684+(S3xC28):2C2336,142
(S3×C28)⋊3C2 = S3×D28φ: C2/C1C2 ⊆ Out S3×C28844+(S3xC28):3C2336,149
(S3×C28)⋊4C2 = D6.D14φ: C2/C1C2 ⊆ Out S3×C281684(S3xC28):4C2336,144
(S3×C28)⋊5C2 = C4×S3×D7φ: C2/C1C2 ⊆ Out S3×C28844(S3xC28):5C2336,147
(S3×C28)⋊6C2 = S3×C7×D4φ: C2/C1C2 ⊆ Out S3×C28844(S3xC28):6C2336,188
(S3×C28)⋊7C2 = C7×D42S3φ: C2/C1C2 ⊆ Out S3×C281684(S3xC28):7C2336,189
(S3×C28)⋊8C2 = C7×Q83S3φ: C2/C1C2 ⊆ Out S3×C281684(S3xC28):8C2336,191
(S3×C28)⋊9C2 = C7×C4○D12φ: C2/C1C2 ⊆ Out S3×C281682(S3xC28):9C2336,187

Non-split extensions G=N.Q with N=S3×C28 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C28).1C2 = S3×Dic14φ: C2/C1C2 ⊆ Out S3×C281684-(S3xC28).1C2336,140
(S3×C28).2C2 = S3×C7⋊C8φ: C2/C1C2 ⊆ Out S3×C281684(S3xC28).2C2336,24
(S3×C28).3C2 = D6.Dic7φ: C2/C1C2 ⊆ Out S3×C281684(S3xC28).3C2336,27
(S3×C28).4C2 = S3×C7×Q8φ: C2/C1C2 ⊆ Out S3×C281684(S3xC28).4C2336,190
(S3×C28).5C2 = C7×C8⋊S3φ: C2/C1C2 ⊆ Out S3×C281682(S3xC28).5C2336,75
(S3×C28).6C2 = S3×C56φ: trivial image1682(S3xC28).6C2336,74

׿
×
𝔽