Extensions 1→N→G→Q→1 with N=C9×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C9×C3⋊S3 and Q=C2
dρLabelID
C18×C3⋊S3108C18xC3:S3324,143

Semidirect products G=N:Q with N=C9×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×C3⋊S3)⋊1C2 = S32×C9φ: C2/C1C2 ⊆ Out C9×C3⋊S3364(C9xC3:S3):1C2324,115
(C9×C3⋊S3)⋊2C2 = D9×C3⋊S3φ: C2/C1C2 ⊆ Out C9×C3⋊S354(C9xC3:S3):2C2324,119
(C9×C3⋊S3)⋊3C2 = C325D18φ: C2/C1C2 ⊆ Out C9×C3⋊S3364(C9xC3:S3):3C2324,123

Non-split extensions G=N.Q with N=C9×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×C3⋊S3).1C2 = C9×C32⋊C4φ: C2/C1C2 ⊆ Out C9×C3⋊S3364(C9xC3:S3).1C2324,109
(C9×C3⋊S3).2C2 = C323Dic9φ: C2/C1C2 ⊆ Out C9×C3⋊S3364(C9xC3:S3).2C2324,112

׿
×
𝔽