Extensions 1→N→G→Q→1 with N=C3 and Q=S3×C3⋊S3

Direct product G=N×Q with N=C3 and Q=S3×C3⋊S3
dρLabelID
C3×S3×C3⋊S336C3xS3xC3:S3324,166

Semidirect products G=N:Q with N=C3 and Q=S3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C31(S3×C3⋊S3) = S3×C33⋊C2φ: S3×C3⋊S3/S3×C32C2 ⊆ Aut C354C3:1(S3xC3:S3)324,168
C32(S3×C3⋊S3) = C3⋊S32φ: S3×C3⋊S3/C3×C3⋊S3C2 ⊆ Aut C318C3:2(S3xC3:S3)324,169
C33(S3×C3⋊S3) = C3317D6φ: S3×C3⋊S3/C33⋊C2C2 ⊆ Aut C336C3:3(S3xC3:S3)324,170

Non-split extensions G=N.Q with N=C3 and Q=S3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(S3×C3⋊S3) = S3×C9⋊S3φ: S3×C3⋊S3/S3×C32C2 ⊆ Aut C354C3.1(S3xC3:S3)324,120
C3.2(S3×C3⋊S3) = D9×C3⋊S3φ: S3×C3⋊S3/C3×C3⋊S3C2 ⊆ Aut C354C3.2(S3xC3:S3)324,119
C3.3(S3×C3⋊S3) = He35D6φ: S3×C3⋊S3/C33⋊C2C2 ⊆ Aut C31812+C3.3(S3xC3:S3)324,121
C3.4(S3×C3⋊S3) = S3×He3⋊C2central stem extension (φ=1)186C3.4(S3xC3:S3)324,122

׿
×
𝔽