Extensions 1→N→G→Q→1 with N=Q8×C21 and Q=C2

Direct product G=N×Q with N=Q8×C21 and Q=C2
dρLabelID
Q8×C42336Q8xC42336,206

Semidirect products G=N:Q with N=Q8×C21 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C21)⋊1C2 = Q82D21φ: C2/C1C2 ⊆ Out Q8×C211684+(Q8xC21):1C2336,103
(Q8×C21)⋊2C2 = Q8×D21φ: C2/C1C2 ⊆ Out Q8×C211684-(Q8xC21):2C2336,200
(Q8×C21)⋊3C2 = Q83D21φ: C2/C1C2 ⊆ Out Q8×C211684+(Q8xC21):3C2336,201
(Q8×C21)⋊4C2 = C3×Q8⋊D7φ: C2/C1C2 ⊆ Out Q8×C211684(Q8xC21):4C2336,71
(Q8×C21)⋊5C2 = C3×Q8×D7φ: C2/C1C2 ⊆ Out Q8×C211684(Q8xC21):5C2336,180
(Q8×C21)⋊6C2 = C3×Q82D7φ: C2/C1C2 ⊆ Out Q8×C211684(Q8xC21):6C2336,181
(Q8×C21)⋊7C2 = C7×Q82S3φ: C2/C1C2 ⊆ Out Q8×C211684(Q8xC21):7C2336,87
(Q8×C21)⋊8C2 = S3×C7×Q8φ: C2/C1C2 ⊆ Out Q8×C211684(Q8xC21):8C2336,190
(Q8×C21)⋊9C2 = C7×Q83S3φ: C2/C1C2 ⊆ Out Q8×C211684(Q8xC21):9C2336,191
(Q8×C21)⋊10C2 = SD16×C21φ: C2/C1C2 ⊆ Out Q8×C211682(Q8xC21):10C2336,112
(Q8×C21)⋊11C2 = C4○D4×C21φ: trivial image1682(Q8xC21):11C2336,207

Non-split extensions G=N.Q with N=Q8×C21 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C21).1C2 = C217Q16φ: C2/C1C2 ⊆ Out Q8×C213364-(Q8xC21).1C2336,104
(Q8×C21).2C2 = C3×C7⋊Q16φ: C2/C1C2 ⊆ Out Q8×C213364(Q8xC21).2C2336,72
(Q8×C21).3C2 = C7×C3⋊Q16φ: C2/C1C2 ⊆ Out Q8×C213364(Q8xC21).3C2336,88
(Q8×C21).4C2 = Q16×C21φ: C2/C1C2 ⊆ Out Q8×C213362(Q8xC21).4C2336,113

׿
×
𝔽