Extensions 1→N→G→Q→1 with N=C2xC4 and Q=S3xC7

Direct product G=NxQ with N=C2xC4 and Q=S3xC7
dρLabelID
S3xC2xC28168S3xC2xC28336,185

Semidirect products G=N:Q with N=C2xC4 and Q=S3xC7
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(S3xC7) = C7xD6:C4φ: S3xC7/C21C2 ⊆ Aut C2xC4168(C2xC4):1(S3xC7)336,84
(C2xC4):2(S3xC7) = C14xD12φ: S3xC7/C21C2 ⊆ Aut C2xC4168(C2xC4):2(S3xC7)336,186
(C2xC4):3(S3xC7) = C7xC4oD12φ: S3xC7/C21C2 ⊆ Aut C2xC41682(C2xC4):3(S3xC7)336,187

Non-split extensions G=N.Q with N=C2xC4 and Q=S3xC7
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(S3xC7) = C7xDic3:C4φ: S3xC7/C21C2 ⊆ Aut C2xC4336(C2xC4).1(S3xC7)336,82
(C2xC4).2(S3xC7) = C7xC4.Dic3φ: S3xC7/C21C2 ⊆ Aut C2xC41682(C2xC4).2(S3xC7)336,80
(C2xC4).3(S3xC7) = C7xC4:Dic3φ: S3xC7/C21C2 ⊆ Aut C2xC4336(C2xC4).3(S3xC7)336,83
(C2xC4).4(S3xC7) = C14xDic6φ: S3xC7/C21C2 ⊆ Aut C2xC4336(C2xC4).4(S3xC7)336,184
(C2xC4).5(S3xC7) = C14xC3:C8central extension (φ=1)336(C2xC4).5(S3xC7)336,79
(C2xC4).6(S3xC7) = Dic3xC28central extension (φ=1)336(C2xC4).6(S3xC7)336,81

׿
x
:
Z
F
o
wr
Q
<