extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(S3xC7) = C7xDic3:C4 | φ: S3xC7/C21 → C2 ⊆ Aut C2xC4 | 336 | | (C2xC4).1(S3xC7) | 336,82 |
(C2xC4).2(S3xC7) = C7xC4.Dic3 | φ: S3xC7/C21 → C2 ⊆ Aut C2xC4 | 168 | 2 | (C2xC4).2(S3xC7) | 336,80 |
(C2xC4).3(S3xC7) = C7xC4:Dic3 | φ: S3xC7/C21 → C2 ⊆ Aut C2xC4 | 336 | | (C2xC4).3(S3xC7) | 336,83 |
(C2xC4).4(S3xC7) = C14xDic6 | φ: S3xC7/C21 → C2 ⊆ Aut C2xC4 | 336 | | (C2xC4).4(S3xC7) | 336,184 |
(C2xC4).5(S3xC7) = C14xC3:C8 | central extension (φ=1) | 336 | | (C2xC4).5(S3xC7) | 336,79 |
(C2xC4).6(S3xC7) = Dic3xC28 | central extension (φ=1) | 336 | | (C2xC4).6(S3xC7) | 336,81 |