Extensions 1→N→G→Q→1 with N=C3×S3 and Q=C3×S3

Direct product G=N×Q with N=C3×S3 and Q=C3×S3
dρLabelID
S32×C3236S3^2xC3^2324,165

Semidirect products G=N:Q with N=C3×S3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C3×S3)⋊(C3×S3) = C3×S3×C3⋊S3φ: C3×S3/C32C2 ⊆ Out C3×S336(C3xS3):(C3xS3)324,166

Non-split extensions G=N.Q with N=C3×S3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C3×S3).1(C3×S3) = C3×S3×D9φ: C3×S3/C32C2 ⊆ Out C3×S3364(C3xS3).1(C3xS3)324,114
(C3×S3).2(C3×S3) = S3×C32⋊C6φ: C3×S3/C32C2 ⊆ Out C3×S31812+(C3xS3).2(C3xS3)324,116
(C3×S3).3(C3×S3) = S3×C9⋊C6φ: C3×S3/C32C2 ⊆ Out C3×S31812+(C3xS3).3(C3xS3)324,118
(C3×S3).4(C3×S3) = S32×C9φ: trivial image364(C3xS3).4(C3xS3)324,115

׿
×
𝔽