Extensions 1→N→G→Q→1 with N=C3xS3 and Q=C3xS3

Direct product G=NxQ with N=C3xS3 and Q=C3xS3
dρLabelID
S32xC3236S3^2xC3^2324,165

Semidirect products G=N:Q with N=C3xS3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C3xS3):(C3xS3) = C3xS3xC3:S3φ: C3xS3/C32C2 ⊆ Out C3xS336(C3xS3):(C3xS3)324,166

Non-split extensions G=N.Q with N=C3xS3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C3xS3).1(C3xS3) = C3xS3xD9φ: C3xS3/C32C2 ⊆ Out C3xS3364(C3xS3).1(C3xS3)324,114
(C3xS3).2(C3xS3) = S3xC32:C6φ: C3xS3/C32C2 ⊆ Out C3xS31812+(C3xS3).2(C3xS3)324,116
(C3xS3).3(C3xS3) = S3xC9:C6φ: C3xS3/C32C2 ⊆ Out C3xS31812+(C3xS3).3(C3xS3)324,118
(C3xS3).4(C3xS3) = S32xC9φ: trivial image364(C3xS3).4(C3xS3)324,115

׿
x
:
Z
F
o
wr
Q
<