Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C14

Direct product G=N×Q with N=C4×S3 and Q=C14
dρLabelID
S3×C2×C28168S3xC2xC28336,185

Semidirect products G=N:Q with N=C4×S3 and Q=C14
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C14 = S3×C7×D4φ: C14/C7C2 ⊆ Out C4×S3844(C4xS3):1C14336,188
(C4×S3)⋊2C14 = C7×D42S3φ: C14/C7C2 ⊆ Out C4×S31684(C4xS3):2C14336,189
(C4×S3)⋊3C14 = C7×Q83S3φ: C14/C7C2 ⊆ Out C4×S31684(C4xS3):3C14336,191
(C4×S3)⋊4C14 = C7×C4○D12φ: C14/C7C2 ⊆ Out C4×S31682(C4xS3):4C14336,187

Non-split extensions G=N.Q with N=C4×S3 and Q=C14
extensionφ:Q→Out NdρLabelID
(C4×S3).1C14 = S3×C7×Q8φ: C14/C7C2 ⊆ Out C4×S31684(C4xS3).1C14336,190
(C4×S3).2C14 = C7×C8⋊S3φ: C14/C7C2 ⊆ Out C4×S31682(C4xS3).2C14336,75
(C4×S3).3C14 = S3×C56φ: trivial image1682(C4xS3).3C14336,74

׿
×
𝔽