Extensions 1→N→G→Q→1 with N=C6 and Q=C9⋊C6

Direct product G=N×Q with N=C6 and Q=C9⋊C6
dρLabelID
C6×C9⋊C6366C6xC9:C6324,140

Semidirect products G=N:Q with N=C6 and Q=C9⋊C6
extensionφ:Q→Aut NdρLabelID
C6⋊(C9⋊C6) = C2×C33.S3φ: C9⋊C6/3- 1+2C2 ⊆ Aut C654C6:(C9:C6)324,146

Non-split extensions G=N.Q with N=C6 and Q=C9⋊C6
extensionφ:Q→Aut NdρLabelID
C6.1(C9⋊C6) = C32⋊Dic9φ: C9⋊C6/3- 1+2C2 ⊆ Aut C6108C6.1(C9:C6)324,8
C6.2(C9⋊C6) = C2×C32⋊D9φ: C9⋊C6/3- 1+2C2 ⊆ Aut C654C6.2(C9:C6)324,63
C6.3(C9⋊C6) = C33.Dic3φ: C9⋊C6/3- 1+2C2 ⊆ Aut C6108C6.3(C9:C6)324,100
C6.4(C9⋊C6) = C9⋊C36central extension (φ=1)366C6.4(C9:C6)324,9
C6.5(C9⋊C6) = C2×C9⋊C18central extension (φ=1)366C6.5(C9:C6)324,64
C6.6(C9⋊C6) = C3×C9⋊C12central extension (φ=1)366C6.6(C9:C6)324,94

׿
×
𝔽