Extensions 1→N→G→Q→1 with N=C2xC14 and Q=C2xC6

Direct product G=NxQ with N=C2xC14 and Q=C2xC6
dρLabelID
C23xC42336C2^3xC42336,228

Semidirect products G=N:Q with N=C2xC14 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C2xC14):(C2xC6) = D4xF7φ: C2xC6/C1C2xC6 ⊆ Aut C2xC142812+(C2xC14):(C2xC6)336,125
(C2xC14):2(C2xC6) = C2xA4xD7φ: C2xC6/C2C6 ⊆ Aut C2xC14426+(C2xC14):2(C2xC6)336,217
(C2xC14):3(C2xC6) = C2xD7:A4φ: C2xC6/C2C6 ⊆ Aut C2xC14426+(C2xC14):3(C2xC6)336,218
(C2xC14):4(C2xC6) = C2xDic7:C6φ: C2xC6/C2C6 ⊆ Aut C2xC1456(C2xC14):4(C2xC6)336,130
(C2xC14):5(C2xC6) = C23xF7φ: C2xC6/C2C6 ⊆ Aut C2xC1456(C2xC14):5(C2xC6)336,216
(C2xC14):6(C2xC6) = C2xD4xC7:C3φ: C2xC6/C2C6 ⊆ Aut C2xC1456(C2xC14):6(C2xC6)336,165
(C2xC14):7(C2xC6) = C3xD4xD7φ: C2xC6/C3C22 ⊆ Aut C2xC14844(C2xC14):7(C2xC6)336,178
(C2xC14):8(C2xC6) = A4xC2xC14φ: C2xC6/C22C3 ⊆ Aut C2xC1484(C2xC14):8(C2xC6)336,221
(C2xC14):9(C2xC6) = C22xC7:A4φ: C2xC6/C22C3 ⊆ Aut C2xC1484(C2xC14):9(C2xC6)336,222
(C2xC14):10(C2xC6) = C24xC7:C3φ: C2xC6/C22C3 ⊆ Aut C2xC14112(C2xC14):10(C2xC6)336,220
(C2xC14):11(C2xC6) = D4xC42φ: C2xC6/C6C2 ⊆ Aut C2xC14168(C2xC14):11(C2xC6)336,205
(C2xC14):12(C2xC6) = C6xC7:D4φ: C2xC6/C6C2 ⊆ Aut C2xC14168(C2xC14):12(C2xC6)336,183
(C2xC14):13(C2xC6) = D7xC22xC6φ: C2xC6/C6C2 ⊆ Aut C2xC14168(C2xC14):13(C2xC6)336,225

Non-split extensions G=N.Q with N=C2xC14 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C2xC14).(C2xC6) = D4:2F7φ: C2xC6/C1C2xC6 ⊆ Aut C2xC145612-(C2xC14).(C2xC6)336,126
(C2xC14).2(C2xC6) = C4xC7:C12φ: C2xC6/C2C6 ⊆ Aut C2xC14112(C2xC14).2(C2xC6)336,14
(C2xC14).3(C2xC6) = Dic7:C12φ: C2xC6/C2C6 ⊆ Aut C2xC14112(C2xC14).3(C2xC6)336,15
(C2xC14).4(C2xC6) = C28:C12φ: C2xC6/C2C6 ⊆ Aut C2xC14112(C2xC14).4(C2xC6)336,16
(C2xC14).5(C2xC6) = D14:C12φ: C2xC6/C2C6 ⊆ Aut C2xC1456(C2xC14).5(C2xC6)336,17
(C2xC14).6(C2xC6) = C23.2F7φ: C2xC6/C2C6 ⊆ Aut C2xC1456(C2xC14).6(C2xC6)336,22
(C2xC14).7(C2xC6) = C2xC4.F7φ: C2xC6/C2C6 ⊆ Aut C2xC14112(C2xC14).7(C2xC6)336,121
(C2xC14).8(C2xC6) = C2xC4xF7φ: C2xC6/C2C6 ⊆ Aut C2xC1456(C2xC14).8(C2xC6)336,122
(C2xC14).9(C2xC6) = C2xC4:F7φ: C2xC6/C2C6 ⊆ Aut C2xC1456(C2xC14).9(C2xC6)336,123
(C2xC14).10(C2xC6) = D28:6C6φ: C2xC6/C2C6 ⊆ Aut C2xC14566(C2xC14).10(C2xC6)336,124
(C2xC14).11(C2xC6) = C22xC7:C12φ: C2xC6/C2C6 ⊆ Aut C2xC14112(C2xC14).11(C2xC6)336,129
(C2xC14).12(C2xC6) = C4oD4xC7:C3φ: C2xC6/C2C6 ⊆ Aut C2xC14566(C2xC14).12(C2xC6)336,167
(C2xC14).13(C2xC6) = C3xD4:2D7φ: C2xC6/C3C22 ⊆ Aut C2xC141684(C2xC14).13(C2xC6)336,179
(C2xC14).14(C2xC6) = C42xC7:C3φ: C2xC6/C22C3 ⊆ Aut C2xC14112(C2xC14).14(C2xC6)336,48
(C2xC14).15(C2xC6) = C22:C4xC7:C3φ: C2xC6/C22C3 ⊆ Aut C2xC1456(C2xC14).15(C2xC6)336,49
(C2xC14).16(C2xC6) = C4:C4xC7:C3φ: C2xC6/C22C3 ⊆ Aut C2xC14112(C2xC14).16(C2xC6)336,50
(C2xC14).17(C2xC6) = C22xC4xC7:C3φ: C2xC6/C22C3 ⊆ Aut C2xC14112(C2xC14).17(C2xC6)336,164
(C2xC14).18(C2xC6) = C2xQ8xC7:C3φ: C2xC6/C22C3 ⊆ Aut C2xC14112(C2xC14).18(C2xC6)336,166
(C2xC14).19(C2xC6) = C4oD4xC21φ: C2xC6/C6C2 ⊆ Aut C2xC141682(C2xC14).19(C2xC6)336,207
(C2xC14).20(C2xC6) = C12xDic7φ: C2xC6/C6C2 ⊆ Aut C2xC14336(C2xC14).20(C2xC6)336,65
(C2xC14).21(C2xC6) = C3xDic7:C4φ: C2xC6/C6C2 ⊆ Aut C2xC14336(C2xC14).21(C2xC6)336,66
(C2xC14).22(C2xC6) = C3xC4:Dic7φ: C2xC6/C6C2 ⊆ Aut C2xC14336(C2xC14).22(C2xC6)336,67
(C2xC14).23(C2xC6) = C3xD14:C4φ: C2xC6/C6C2 ⊆ Aut C2xC14168(C2xC14).23(C2xC6)336,68
(C2xC14).24(C2xC6) = C3xC23.D7φ: C2xC6/C6C2 ⊆ Aut C2xC14168(C2xC14).24(C2xC6)336,73
(C2xC14).25(C2xC6) = C6xDic14φ: C2xC6/C6C2 ⊆ Aut C2xC14336(C2xC14).25(C2xC6)336,174
(C2xC14).26(C2xC6) = D7xC2xC12φ: C2xC6/C6C2 ⊆ Aut C2xC14168(C2xC14).26(C2xC6)336,175
(C2xC14).27(C2xC6) = C6xD28φ: C2xC6/C6C2 ⊆ Aut C2xC14168(C2xC14).27(C2xC6)336,176
(C2xC14).28(C2xC6) = C3xC4oD28φ: C2xC6/C6C2 ⊆ Aut C2xC141682(C2xC14).28(C2xC6)336,177
(C2xC14).29(C2xC6) = C2xC6xDic7φ: C2xC6/C6C2 ⊆ Aut C2xC14336(C2xC14).29(C2xC6)336,182
(C2xC14).30(C2xC6) = C22:C4xC21central extension (φ=1)168(C2xC14).30(C2xC6)336,107
(C2xC14).31(C2xC6) = C4:C4xC21central extension (φ=1)336(C2xC14).31(C2xC6)336,108
(C2xC14).32(C2xC6) = Q8xC42central extension (φ=1)336(C2xC14).32(C2xC6)336,206

׿
x
:
Z
F
o
wr
Q
<